summaryrefslogtreecommitdiff
path: root/theories/NArith/Ndigits.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/Ndigits.v')
-rw-r--r--theories/NArith/Ndigits.v113
1 files changed, 59 insertions, 54 deletions
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index 764ecc12..55ef451e 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -1,13 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Bool Morphisms Setoid Bvector BinPos BinNat Wf_nat
- Pnat Nnat Compare_dec Lt Minus.
+Require Import Bool Morphisms Setoid Bvector BinPos BinNat PeanoNat Pnat Nnat.
Local Open Scope N_scope.
@@ -86,7 +85,7 @@ Lemma Nshiftl_nat_equiv :
forall a n, N.shiftl_nat a (N.to_nat n) = N.shiftl a n.
Proof.
intros [|a] [|n]; simpl; unfold N.shiftl_nat; trivial.
- apply nat_iter_invariant; intros; now subst.
+ induction (Pos.to_nat n) as [|? H]; simpl; now try rewrite H.
rewrite <- Pos2Nat.inj_iter. symmetry. now apply Pos.iter_swap_gen.
Qed.
@@ -103,7 +102,7 @@ Lemma Nshiftr_nat_spec : forall a n m,
Proof.
induction n; intros m.
now rewrite <- plus_n_O.
- simpl. rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn, Nshiftr_nat_S.
+ simpl. rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn.
destruct (N.shiftr_nat a n) as [|[p|p|]]; simpl; trivial.
Qed.
@@ -111,10 +110,12 @@ Lemma Nshiftl_nat_spec_high : forall a n m, (n<=m)%nat ->
N.testbit_nat (N.shiftl_nat a n) m = N.testbit_nat a (m-n).
Proof.
induction n; intros m H.
- now rewrite <- minus_n_O.
- destruct m. inversion H. apply le_S_n in H.
- simpl. rewrite <- IHn, Nshiftl_nat_S; trivial.
- destruct (N.shiftl_nat a n) as [|[p|p|]]; simpl; trivial.
+ - now rewrite Nat.sub_0_r.
+ - destruct m.
+ + inversion H.
+ + apply le_S_n in H.
+ simpl. rewrite <- IHn; trivial.
+ destruct (N.shiftl_nat a n) as [|[p|p|]]; simpl; trivial.
Qed.
Lemma Nshiftl_nat_spec_low : forall a n m, (m<n)%nat ->
@@ -123,9 +124,10 @@ Proof.
induction n; intros m H. inversion H.
rewrite Nshiftl_nat_S.
destruct m.
- destruct (N.shiftl_nat a n); trivial.
- specialize (IHn m (lt_S_n _ _ H)).
- destruct (N.shiftl_nat a n); trivial.
+ - destruct (N.shiftl_nat a n); trivial.
+ - apply Lt.lt_S_n in H.
+ specialize (IHn m H).
+ destruct (N.shiftl_nat a n); trivial.
Qed.
(** A left shift for positive numbers (used in BigN) *)
@@ -148,7 +150,7 @@ Lemma Pshiftl_nat_plus : forall n m p,
Pos.shiftl_nat p (m + n) = Pos.shiftl_nat (Pos.shiftl_nat p n) m.
Proof.
induction m; simpl; intros. reflexivity.
- rewrite 2 Pshiftl_nat_S. now f_equal.
+ now f_equal.
Qed.
(** Semantics of bitwise operations with respect to [N.testbit_nat] *)
@@ -446,49 +448,52 @@ Lemma Nless_trans :
Nless a a' = true -> Nless a' a'' = true -> Nless a a'' = true.
Proof.
induction a as [|a IHa|a IHa] using N.binary_ind; intros a' a'' H H0.
- case_eq (Nless N0 a'') ; intros Heqn. trivial.
- rewrite (N0_less_2 a'' Heqn), (Nless_z a') in H0. discriminate H0.
- induction a' as [|a' _|a' _] using N.binary_ind.
- rewrite (Nless_z (N.double a)) in H. discriminate H.
- rewrite (Nless_def_1 a a') in H.
- induction a'' using N.binary_ind.
- rewrite (Nless_z (N.double a')) in H0. discriminate H0.
- rewrite (Nless_def_1 a' a'') in H0. rewrite (Nless_def_1 a a'').
- exact (IHa _ _ H H0).
- apply Nless_def_3.
- induction a'' as [|a'' _|a'' _] using N.binary_ind.
- rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
- rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
- apply Nless_def_3.
- induction a' as [|a' _|a' _] using N.binary_ind.
- rewrite (Nless_z (N.succ_double a)) in H. discriminate H.
- rewrite (Nless_def_4 a a') in H. discriminate H.
+ - case_eq (Nless N0 a'') ; intros Heqn.
+ + trivial.
+ + rewrite (N0_less_2 a'' Heqn), (Nless_z a') in H0. discriminate H0.
+ - induction a' as [|a' _|a' _] using N.binary_ind.
+ + rewrite (Nless_z (N.double a)) in H. discriminate H.
+ + rewrite (Nless_def_1 a a') in H.
induction a'' using N.binary_ind.
- rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
- rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
- rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
- rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
+ * rewrite (Nless_z (N.double a')) in H0. discriminate H0.
+ * rewrite (Nless_def_1 a' a'') in H0. rewrite (Nless_def_1 a a'').
+ exact (IHa _ _ H H0).
+ * apply Nless_def_3.
+ + induction a'' as [|a'' _|a'' _] using N.binary_ind.
+ * rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
+ * rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
+ * apply Nless_def_3.
+ - induction a' as [|a' _|a' _] using N.binary_ind.
+ + rewrite (Nless_z (N.succ_double a)) in H. discriminate H.
+ + rewrite (Nless_def_4 a a') in H. discriminate H.
+ + induction a'' using N.binary_ind.
+ * rewrite (Nless_z (N.succ_double a')) in H0. discriminate H0.
+ * rewrite (Nless_def_4 a' a'') in H0. discriminate H0.
+ * rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
+ rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
Qed.
Lemma Nless_total :
forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
induction a using N.binary_rec; intro a'.
- case_eq (Nless N0 a') ; intros Heqb. left. left. auto.
- right. rewrite (N0_less_2 a' Heqb). reflexivity.
- induction a' as [|a' _|a' _] using N.binary_rec.
- case_eq (Nless N0 (N.double a)) ; intros Heqb. left. right. auto.
- right. exact (N0_less_2 _ Heqb).
- rewrite 2!Nless_def_1. destruct (IHa a') as [ | ->].
- left. assumption.
- right. reflexivity.
- left. left. apply Nless_def_3.
- induction a' as [|a' _|a' _] using N.binary_rec.
- left. right. destruct a; reflexivity.
- left. right. apply Nless_def_3.
- rewrite 2!Nless_def_2. destruct (IHa a') as [ | ->].
- left. assumption.
- right. reflexivity.
+ - case_eq (Nless N0 a') ; intros Heqb.
+ + left. left. auto.
+ + right. rewrite (N0_less_2 a' Heqb). reflexivity.
+ - induction a' as [|a' _|a' _] using N.binary_rec.
+ + case_eq (Nless N0 (N.double a)) ; intros Heqb.
+ * left. right. auto.
+ * right. exact (N0_less_2 _ Heqb).
+ + rewrite 2!Nless_def_1. destruct (IHa a') as [ | ->].
+ * left. assumption.
+ * right. reflexivity.
+ + left. left. apply Nless_def_3.
+ - induction a' as [|a' _|a' _] using N.binary_rec.
+ + left. right. destruct a; reflexivity.
+ + left. right. apply Nless_def_3.
+ + rewrite 2!Nless_def_2. destruct (IHa a') as [ | ->].
+ * left. assumption.
+ * right. reflexivity.
Qed.
(** Number of digits in a number *)
@@ -512,9 +517,9 @@ Definition N2Bv (n:N) : Bvector (N.size_nat n) :=
Fixpoint Bv2N (n:nat)(bv:Bvector n) : N :=
match bv with
- | Vector.nil => N0
- | Vector.cons false n bv => N.double (Bv2N n bv)
- | Vector.cons true n bv => N.succ_double (Bv2N n bv)
+ | Vector.nil _ => N0
+ | Vector.cons _ false n bv => N.double (Bv2N n bv)
+ | Vector.cons _ true n bv => N.succ_double (Bv2N n bv)
end.
Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
@@ -622,7 +627,7 @@ induction bv; intros.
inversion H.
destruct p ; simpl.
destruct (Bv2N n bv); destruct h; simpl in *; auto.
- specialize IHbv with p (lt_S_n _ _ H).
+ specialize IHbv with p (Lt.lt_S_n _ _ H).
simpl in * ; destruct (Bv2N n bv); destruct h; simpl in *; auto.
Qed.
@@ -641,7 +646,7 @@ Proof.
destruct n as [|n].
inversion H.
induction n ; destruct p ; unfold Vector.nth_order in *; simpl in * ; auto.
-intros H ; destruct (lt_n_O _ (lt_S_n _ _ H)).
+intros H ; destruct (Lt.lt_n_O _ (Lt.lt_S_n _ _ H)).
Qed.
(** Binary bitwise operations are the same in the two worlds. *)