summaryrefslogtreecommitdiff
path: root/theories/NArith/Ndigits.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/NArith/Ndigits.v')
-rw-r--r--theories/NArith/Ndigits.v108
1 files changed, 54 insertions, 54 deletions
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index fb32274e..b6c18e9b 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndigits.v 11735 2009-01-02 17:22:31Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Bool.
Require Import Bvector.
@@ -17,7 +17,7 @@ Require Import BinNat.
(** [xor] *)
-Fixpoint Pxor (p1 p2:positive) {struct p1} : N :=
+Fixpoint Pxor (p1 p2:positive) : N :=
match p1, p2 with
| xH, xH => N0
| xH, xO p2 => Npos (xI p2)
@@ -27,7 +27,7 @@ Fixpoint Pxor (p1 p2:positive) {struct p1} : N :=
| xO p1, xI p2 => Ndouble_plus_one (Pxor p1 p2)
| xI p1, xH => Npos (xO p1)
| xI p1, xO p2 => Ndouble_plus_one (Pxor p1 p2)
- | xI p1, xI p2 => Ndouble (Pxor p1 p2)
+ | xI p1, xI p2 => Ndouble (Pxor p1 p2)
end.
Definition Nxor (n n':N) :=
@@ -65,7 +65,7 @@ Proof.
simpl. rewrite IHp; reflexivity.
Qed.
-(** Checking whether a particular bit is set on not *)
+(** Checking whether a particular bit is set on not *)
Fixpoint Pbit (p:positive) : nat -> bool :=
match p with
@@ -134,13 +134,13 @@ Qed.
(** End of auxilliary results *)
-(** This part is aimed at proving that if two numbers produce
+(** This part is aimed at proving that if two numbers produce
the same stream of bits, then they are equal. *)
Lemma Nbit_faithful_1 : forall a:N, eqf (Nbit N0) (Nbit a) -> N0 = a.
Proof.
destruct a. trivial.
- induction p as [p IHp| p IHp| ]; intro H.
+ induction p as [p IHp| p IHp| ]; intro H.
absurd (N0 = Npos p). discriminate.
exact (IHp (fun n => H (S n))).
absurd (N0 = Npos p). discriminate.
@@ -196,7 +196,7 @@ Proof.
assert (Npos p = Npos p') by exact (IHp (Npos p') H0).
inversion H1. reflexivity.
assumption.
- intros. apply Nbit_faithful_3. intros.
+ intros. apply Nbit_faithful_3. intros.
assert (Npos p = Npos p') by exact (IHp (Npos p') H0).
inversion H1. reflexivity.
assumption.
@@ -257,7 +257,7 @@ Proof.
generalize (fun p1 p2 => H (Npos p1) (Npos p2)); clear H; intro H.
unfold xorf in *.
destruct a as [|p]. simpl Nbit; rewrite false_xorb. reflexivity.
- destruct a' as [|p0].
+ destruct a' as [|p0].
simpl Nbit; rewrite xorb_false. reflexivity.
destruct p. destruct p0; simpl Nbit in *.
rewrite <- H; simpl; case (Pxor p p0); trivial.
@@ -273,13 +273,13 @@ Qed.
Lemma Nxor_semantics :
forall a a':N, eqf (Nbit (Nxor a a')) (xorf (Nbit a) (Nbit a')).
Proof.
- unfold eqf. intros; generalize a, a'. induction n.
+ unfold eqf. intros; generalize a, a'. induction n.
apply Nxor_sem_5. apply Nxor_sem_6; assumption.
Qed.
-(** Consequences:
+(** Consequences:
- only equal numbers lead to a null xor
- - xor is associative
+ - xor is associative
*)
Lemma Nxor_eq : forall a a':N, Nxor a a' = N0 -> a = a'.
@@ -306,7 +306,7 @@ Proof.
apply eqf_sym, Nxor_semantics.
Qed.
-(** Checking whether a number is odd, i.e.
+(** Checking whether a number is odd, i.e.
if its lower bit is set. *)
Definition Nbit0 (n:N) :=
@@ -380,8 +380,8 @@ Lemma Nneg_bit0 :
forall a a':N,
Nbit0 (Nxor a a') = true -> Nbit0 a = negb (Nbit0 a').
Proof.
- intros.
- rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc, xorb_nilpotent, xorb_false.
+ intros.
+ rewrite <- true_xorb, <- H, Nxor_bit0, xorb_assoc, xorb_nilpotent, xorb_false.
reflexivity.
Qed.
@@ -402,14 +402,14 @@ Lemma Nsame_bit0 :
forall (a a':N) (p:positive),
Nxor a a' = Npos (xO p) -> Nbit0 a = Nbit0 a'.
Proof.
- intros. rewrite <- (xorb_false (Nbit0 a)).
+ intros. rewrite <- (xorb_false (Nbit0 a)).
assert (H0: Nbit0 (Npos (xO p)) = false) by reflexivity.
rewrite <- H0, <- H, Nxor_bit0, <- xorb_assoc, xorb_nilpotent, false_xorb. reflexivity.
Qed.
(** a lexicographic order on bits, starting from the lowest bit *)
-Fixpoint Nless_aux (a a':N) (p:positive) {struct p} : bool :=
+Fixpoint Nless_aux (a a':N) (p:positive) : bool :=
match p with
| xO p' => Nless_aux (Ndiv2 a) (Ndiv2 a') p'
| _ => andb (negb (Nbit0 a)) (Nbit0 a')
@@ -430,7 +430,7 @@ Proof.
assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
@@ -443,7 +443,7 @@ Proof.
assert (H1: Nbit0 (Nxor a a') = false) by (rewrite H2; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H1. discriminate H1.
simpl. rewrite H, H0. reflexivity.
- assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
+ assert (H2: Nbit0 (Nxor a a') = false) by (rewrite H1; reflexivity).
rewrite (Nxor_bit0 a a'), H, H0 in H2. discriminate H2.
Qed.
@@ -496,14 +496,14 @@ Qed.
Lemma N0_less_1 :
forall a, Nless N0 a = true -> {p : positive | a = Npos p}.
Proof.
- destruct a. intros. discriminate.
+ destruct a. discriminate.
intros. exists p. reflexivity.
Qed.
Lemma N0_less_2 : forall a, Nless N0 a = false -> a = N0.
Proof.
induction a as [|p]; intro H. trivial.
- elimtype False. induction p as [|p IHp|]; discriminate || simpl; auto using IHp.
+ exfalso. induction p as [|p IHp|]; discriminate || simpl; auto using IHp.
Qed.
Lemma Nless_trans :
@@ -534,7 +534,7 @@ Proof.
rewrite (Nless_def_2 a' a'') in H0. rewrite (Nless_def_2 a a') in H.
rewrite (Nless_def_2 a a''). exact (IHa _ _ H H0).
Qed.
-
+
Lemma Nless_total :
forall a a', {Nless a a' = true} + {Nless a' a = true} + {a = a'}.
Proof.
@@ -558,7 +558,7 @@ Qed.
(** Number of digits in a number *)
-Definition Nsize (n:N) : nat := match n with
+Definition Nsize (n:N) : nat := match n with
| N0 => 0%nat
| Npos p => Psize p
end.
@@ -566,35 +566,35 @@ Definition Nsize (n:N) : nat := match n with
(** conversions between N and bit vectors. *)
-Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
- match p return Bvector (Psize p) with
+Fixpoint P2Bv (p:positive) : Bvector (Psize p) :=
+ match p return Bvector (Psize p) with
| xH => Bvect_true 1%nat
| xO p => Bcons false (Psize p) (P2Bv p)
| xI p => Bcons true (Psize p) (P2Bv p)
end.
Definition N2Bv (n:N) : Bvector (Nsize n) :=
- match n as n0 return Bvector (Nsize n0) with
+ match n as n0 return Bvector (Nsize n0) with
| N0 => Bnil
| Npos p => P2Bv p
end.
-Fixpoint Bv2N (n:nat)(bv:Bvector n) {struct bv} : N :=
- match bv with
+Fixpoint Bv2N (n:nat)(bv:Bvector n) : N :=
+ match bv with
| Vnil => N0
| Vcons false n bv => Ndouble (Bv2N n bv)
- | Vcons true n bv => Ndouble_plus_one (Bv2N n bv)
+ | Vcons true n bv => Ndouble_plus_one (Bv2N n bv)
end.
Lemma Bv2N_N2Bv : forall n, Bv2N _ (N2Bv n) = n.
-Proof.
+Proof.
destruct n.
simpl; auto.
induction p; simpl in *; auto; rewrite IHp; simpl; auto.
Qed.
-(** The opposite composition is not so simple: if the considered
- bit vector has some zeros on its right, they will disappear during
+(** The opposite composition is not so simple: if the considered
+ bit vector has some zeros on its right, they will disappear during
the return [Bv2N] translation: *)
Lemma Bv2N_Nsize : forall n (bv:Bvector n), Nsize (Bv2N n bv) <= n.
@@ -603,16 +603,16 @@ induction n; intros.
rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
specialize IHn with (Vtail _ _ bv).
-destruct (Vhead _ _ bv);
- destruct (Bv2N n (Vtail bool n bv));
+destruct (Vhead _ _ bv);
+ destruct (Bv2N n (Vtail bool n bv));
simpl; auto with arith.
Qed.
(** In the previous lemma, we can only replace the inequality by
an equality whenever the highest bit is non-null. *)
-Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
- Bsign _ bv = true <->
+Lemma Bv2N_Nsize_1 : forall n (bv:Bvector (S n)),
+ Bsign _ bv = true <->
Nsize (Bv2N _ bv) = (S n).
Proof.
induction n; intro.
@@ -621,18 +621,18 @@ rewrite (V0_eq _ (Vtail _ _ bv)); simpl.
destruct (Vhead _ _ bv); simpl; intuition; try discriminate.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
-destruct (Vhead _ _ bv);
- destruct (Bv2N (S n) (Vtail bool (S n) bv));
+destruct (Vhead _ _ bv);
+ destruct (Bv2N (S n) (Vtail bool (S n) bv));
simpl; intuition; try discriminate.
Qed.
-(** To state nonetheless a second result about composition of
- conversions, we define a conversion on a given number of bits : *)
+(** To state nonetheless a second result about composition of
+ conversions, we define a conversion on a given number of bits : *)
-Fixpoint N2Bv_gen (n:nat)(a:N) { struct n } : Bvector n :=
- match n return Bvector n with
+Fixpoint N2Bv_gen (n:nat)(a:N) : Bvector n :=
+ match n return Bvector n with
| 0 => Bnil
- | S n => match a with
+ | S n => match a with
| N0 => Bvect_false (S n)
| Npos xH => Bcons true _ (Bvect_false n)
| Npos (xO p) => Bcons false _ (N2Bv_gen n (Npos p))
@@ -649,10 +649,10 @@ auto.
induction p; simpl; intros; auto; congruence.
Qed.
-(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
+(** In fact, if [k] is large enough, [N2Bv_gen k a] contains all digits of
[a] plus some zeros. *)
-Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
+Lemma N2Bv_N2Bv_gen_above : forall (a:N)(k:nat),
N2Bv_gen (Nsize a + k) a = Vextend _ _ _ (N2Bv a) (Bvect_false k).
Proof.
destruct a; simpl.
@@ -662,7 +662,7 @@ Qed.
(** Here comes now the second composition result. *)
-Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
+Lemma N2Bv_Bv2N : forall n (bv:Bvector n),
N2Bv_gen n (Bv2N n bv) = bv.
Proof.
induction n; intros.
@@ -670,36 +670,36 @@ rewrite (V0_eq _ bv); simpl; auto.
rewrite (VSn_eq _ _ bv); simpl.
generalize (IHn (Vtail _ _ bv)); clear IHn.
unfold Bcons.
-destruct (Bv2N _ (Vtail _ _ bv));
- destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial;
+destruct (Bv2N _ (Vtail _ _ bv));
+ destruct (Vhead _ _ bv); intro H; rewrite <- H; simpl; trivial;
induction n; simpl; auto.
Qed.
(** accessing some precise bits. *)
-Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
+Lemma Nbit0_Blow : forall n, forall (bv:Bvector (S n)),
Nbit0 (Bv2N _ bv) = Blow _ bv.
Proof.
intros.
unfold Blow.
rewrite (VSn_eq _ _ bv) at 1.
simpl.
-destruct (Bv2N n (Vtail bool n bv)); simpl;
+destruct (Bv2N n (Vtail bool n bv)); simpl;
destruct (Vhead bool n bv); auto.
Qed.
Definition Bnth (n:nat)(bv:Bvector n)(p:nat) : p<n -> bool.
Proof.
- induction 1.
+ induction bv in p |- *.
intros.
- elimtype False; inversion H.
+ exfalso; inversion H.
intros.
destruct p.
exact a.
apply (IHbv p); auto with arith.
Defined.
-Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
+Lemma Bnth_Nbit : forall n (bv:Bvector n) p (H:p<n),
Bnth _ bv p H = Nbit (Bv2N _ bv) p.
Proof.
induction bv; intros.
@@ -726,7 +726,7 @@ Qed.
(** Xor is the same in the two worlds. *)
-Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
+Lemma Nxor_BVxor : forall n (bv bv' : Bvector n),
Bv2N _ (BVxor _ bv bv') = Nxor (Bv2N _ bv) (Bv2N _ bv').
Proof.
induction n.
@@ -735,7 +735,7 @@ rewrite (V0_eq _ bv), (V0_eq _ bv'); simpl; auto.
intros.
rewrite (VSn_eq _ _ bv), (VSn_eq _ _ bv'); simpl; auto.
rewrite IHn.
-destruct (Vhead bool n bv); destruct (Vhead bool n bv');
+destruct (Vhead bool n bv); destruct (Vhead bool n bv');
destruct (Bv2N n (Vtail bool n bv)); destruct (Bv2N n (Vtail bool n bv')); simpl; auto.
Qed.