summaryrefslogtreecommitdiff
path: root/theories/MSets
diff options
context:
space:
mode:
Diffstat (limited to 'theories/MSets')
-rw-r--r--theories/MSets/MSetAVL.v15
-rw-r--r--theories/MSets/MSetDecide.v2
-rw-r--r--theories/MSets/MSetEqProperties.v2
-rw-r--r--theories/MSets/MSetFacts.v2
-rw-r--r--theories/MSets/MSetInterface.v219
-rw-r--r--theories/MSets/MSetList.v5
-rw-r--r--theories/MSets/MSetProperties.v27
-rw-r--r--theories/MSets/MSetToFiniteSet.v2
-rw-r--r--theories/MSets/MSetWeakList.v4
-rw-r--r--theories/MSets/MSets.v2
10 files changed, 237 insertions, 43 deletions
diff --git a/theories/MSets/MSetAVL.v b/theories/MSets/MSetAVL.v
index 96580749..bdada486 100644
--- a/theories/MSets/MSetAVL.v
+++ b/theories/MSets/MSetAVL.v
@@ -7,8 +7,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * MSetAVL : Implementation of MSetInterface via AVL trees *)
(** This module implements finite sets using AVL trees.
@@ -48,6 +46,7 @@ Local Open Scope Int_scope.
Local Open Scope lazy_bool_scope.
Definition elt := X.t.
+Hint Transparent elt.
(** ** Trees
@@ -376,7 +375,7 @@ Fixpoint fold (A : Type) (f : elt -> A -> A)(s : t) : A -> A :=
| Leaf => a
| Node l x r _ => fold f r (f x (fold f l a))
end.
-Implicit Arguments fold [A].
+Arguments fold [A] f s _.
(** ** Subset *)
@@ -877,12 +876,12 @@ Open Scope Int_scope.
Ltac join_tac :=
intro l; induction l as [| ll _ lx lr Hlr lh];
[ | intros x r; induction r as [| rl Hrl rx rr _ rh]; unfold join;
- [ | destruct (gt_le_dec lh (rh+2));
+ [ | destruct (gt_le_dec lh (rh+2)) as [GT|LE];
[ match goal with |- context b [ bal ?a ?b ?c] =>
replace (bal a b c)
with (bal ll lx (join lr x (Node rl rx rr rh))); [ | auto]
end
- | destruct (gt_le_dec rh (lh+2));
+ | destruct (gt_le_dec rh (lh+2)) as [GT'|LE'];
[ match goal with |- context b [ bal ?a ?b ?c] =>
replace (bal a b c)
with (bal (join (Node ll lx lr lh) x rl) rx rr); [ | auto]
@@ -905,7 +904,7 @@ Instance join_ok : forall l x r `(Ok l, Ok r, lt_tree x l, gt_tree x r),
Ok (join l x r).
Proof.
join_tac; auto with *; inv; apply bal_ok; auto;
- clear Hrl Hlr z; intro; intros; rewrite join_spec in *.
+ clear Hrl Hlr; intro; intros; rewrite join_spec in *.
intuition; [ setoid_replace y with x | ]; eauto.
intuition; [ setoid_replace y with x | ]; eauto.
Qed.
@@ -1691,7 +1690,7 @@ Proof.
Qed.
Definition lt (s1 s2 : t) : Prop :=
- exists s1', exists s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
+ exists s1' s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
/\ L.lt (elements s1') (elements s2').
Instance lt_strorder : StrictOrder lt.
@@ -1768,7 +1767,7 @@ Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
(flatten_e (More x2 r2 e2)).
Proof.
- simpl; intros; elim_compare x1 x2; simpl; auto.
+ simpl; intros; elim_compare x1 x2; simpl; red; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
diff --git a/theories/MSets/MSetDecide.v b/theories/MSets/MSetDecide.v
index 4ec050bd..eefd2951 100644
--- a/theories/MSets/MSetDecide.v
+++ b/theories/MSets/MSetDecide.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(**************************************************************)
(* MSetDecide.v *)
(* *)
diff --git a/theories/MSets/MSetEqProperties.v b/theories/MSets/MSetEqProperties.v
index fe6c3c79..2e7da404 100644
--- a/theories/MSets/MSetEqProperties.v
+++ b/theories/MSets/MSetEqProperties.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library *)
(** This module proves many properties of finite sets that
diff --git a/theories/MSets/MSetFacts.v b/theories/MSets/MSetFacts.v
index 6d38b696..4e17618f 100644
--- a/theories/MSets/MSetFacts.v
+++ b/theories/MSets/MSetFacts.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library *)
(** This functor derives additional facts from [MSetInterface.S]. These
diff --git a/theories/MSets/MSetInterface.v b/theories/MSets/MSetInterface.v
index 194cb904..f2b908af 100644
--- a/theories/MSets/MSetInterface.v
+++ b/theories/MSets/MSetInterface.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite set library *)
(** Set interfaces, inspired by the one of Ocaml. When compared with
@@ -439,7 +437,7 @@ Module WRaw2SetsOn (E:DecidableType)(M:WRawSets E) <: WSetsOn E.
Record t_ := Mkt {this :> M.t; is_ok : M.Ok this}.
Definition t := t_.
- Implicit Arguments Mkt [ [is_ok] ].
+ Arguments Mkt this {is_ok}.
Hint Resolve is_ok : typeclass_instances.
Definition In (x : elt)(s : t) := M.In x s.(this).
@@ -653,7 +651,218 @@ Module Raw2Sets (O:OrderedType)(M:RawSets O) <: Sets with Module E := O.
End Raw2Sets.
-(** We provide an ordering for sets-as-sorted-lists *)
+(** It is in fact possible to provide an ordering on sets with
+ very little information on them (more or less only the [In]
+ predicate). This generic build of ordering is in fact not
+ used for the moment, we rather use a simplier version
+ dedicated to sets-as-sorted-lists, see [MakeListOrdering].
+*)
+
+Module Type IN (O:OrderedType).
+ Parameter Inline t : Type.
+ Parameter Inline In : O.t -> t -> Prop.
+ Declare Instance In_compat : Proper (O.eq==>eq==>iff) In.
+ Definition Equal s s' := forall x, In x s <-> In x s'.
+ Definition Empty s := forall x, ~In x s.
+End IN.
+
+Module MakeSetOrdering (O:OrderedType)(Import M:IN O).
+ Module Import MO := OrderedTypeFacts O.
+
+ Definition eq : t -> t -> Prop := Equal.
+
+ Instance eq_equiv : Equivalence eq.
+ Proof. firstorder. Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) In.
+ Proof.
+ intros x x' Ex s s' Es. rewrite Ex. apply Es.
+ Qed.
+
+ Definition Below x s := forall y, In y s -> O.lt y x.
+ Definition Above x s := forall y, In y s -> O.lt x y.
+
+ Definition EquivBefore x s s' :=
+ forall y, O.lt y x -> (In y s <-> In y s').
+
+ Definition EmptyBetween x y s :=
+ forall z, In z s -> O.lt z y -> O.lt z x.
+
+ Definition lt s s' := exists x, EquivBefore x s s' /\
+ ((In x s' /\ Below x s) \/
+ (In x s /\ exists y, In y s' /\ O.lt x y /\ EmptyBetween x y s')).
+
+ Instance : Proper (O.eq==>eq==>eq==>iff) EquivBefore.
+ Proof.
+ unfold EquivBefore. intros x x' E s1 s1' E1 s2 s2' E2.
+ setoid_rewrite E; setoid_rewrite E1; setoid_rewrite E2; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) Below.
+ Proof.
+ unfold Below. intros x x' Ex s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>eq==>iff) Above.
+ Proof.
+ unfold Above. intros x x' Ex s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance : Proper (O.eq==>O.eq==>eq==>iff) EmptyBetween.
+ Proof.
+ unfold EmptyBetween. intros x x' Ex y y' Ey s s' Es.
+ setoid_rewrite Ex; setoid_rewrite Ey; setoid_rewrite Es; intuition.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ unfold lt. intros s1 s1' E1 s2 s2' E2.
+ setoid_rewrite E1; setoid_rewrite E2; intuition.
+ Qed.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ (* irreflexive *)
+ intros s (x & _ & [(IN,Em)|(IN & y & IN' & LT & Be)]).
+ specialize (Em x IN); order.
+ specialize (Be x IN LT); order.
+ (* transitive *)
+ intros s1 s2 s3 (x & EQ & [(IN,Pre)|(IN,Lex)])
+ (x' & EQ' & [(IN',Pre')|(IN',Lex')]).
+ (* 1) Pre / Pre --> Pre *)
+ assert (O.lt x x') by (specialize (Pre' x IN); auto).
+ exists x; split.
+ intros y Hy; rewrite <- (EQ' y); auto; order.
+ left; split; auto.
+ rewrite <- (EQ' x); auto.
+ (* 2) Pre / Lex *)
+ elim_compare x x'.
+ (* 2a) x=x' --> Pre *)
+ destruct Lex' as (y & INy & LT & Be).
+ exists y; split.
+ intros z Hz. split; intros INz.
+ specialize (Pre z INz). rewrite <- (EQ' z), <- (EQ z); auto; order.
+ specialize (Be z INz Hz). rewrite (EQ z), (EQ' z); auto; order.
+ left; split; auto.
+ intros z Hz. transitivity x; auto; order.
+ (* 2b) x<x' --> Pre *)
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ left; split; auto.
+ rewrite <- (EQ' x); auto.
+ (* 2c) x>x' --> Lex *)
+ exists x'; split.
+ intros z Hz. rewrite (EQ z) by order; auto.
+ right; split; auto.
+ rewrite (EQ x'); auto.
+ (* 3) Lex / Pre --> Lex *)
+ destruct Lex as (y & INy & LT & Be).
+ specialize (Pre' y INy).
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ right; split; auto.
+ exists y; repeat split; auto.
+ rewrite <- (EQ' y); auto.
+ intros z Hz LTz; apply Be; auto. rewrite (EQ' z); auto; order.
+ (* 4) Lex / Lex *)
+ elim_compare x x'.
+ (* 4a) x=x' --> impossible *)
+ destruct Lex as (y & INy & LT & Be).
+ setoid_replace x with x' in LT; auto.
+ specialize (Be x' IN' LT); order.
+ (* 4b) x<x' --> Lex *)
+ exists x; split.
+ intros z Hz. rewrite <- (EQ' z) by order; auto.
+ right; split; auto.
+ destruct Lex as (y & INy & LT & Be).
+ elim_compare y x'.
+ (* 4ba *)
+ destruct Lex' as (y' & Iny' & LT' & Be').
+ exists y'; repeat split; auto. order.
+ intros z Hz LTz. specialize (Be' z Hz LTz).
+ rewrite <- (EQ' z) in Hz by order.
+ apply Be; auto. order.
+ (* 4bb *)
+ exists y; repeat split; auto.
+ rewrite <- (EQ' y); auto.
+ intros z Hz LTz. apply Be; auto. rewrite (EQ' z); auto; order.
+ (* 4bc*)
+ assert (O.lt x' x) by auto. order.
+ (* 4c) x>x' --> Lex *)
+ exists x'; split.
+ intros z Hz. rewrite (EQ z) by order; auto.
+ right; split; auto.
+ rewrite (EQ x'); auto.
+ Qed.
+
+ Lemma lt_empty_r : forall s s', Empty s' -> ~ lt s s'.
+ Proof.
+ intros s s' Hs' (x & _ & [(IN,_)|(_ & y & IN & _)]).
+ elim (Hs' x IN).
+ elim (Hs' y IN).
+ Qed.
+
+ Definition Add x s s' := forall y, In y s' <-> O.eq x y \/ In y s.
+
+ Lemma lt_empty_l : forall x s1 s2 s2',
+ Empty s1 -> Above x s2 -> Add x s2 s2' -> lt s1 s2'.
+ Proof.
+ intros x s1 s2 s2' Em Ab Ad.
+ exists x; split.
+ intros y Hy; split; intros IN.
+ elim (Em y IN).
+ rewrite (Ad y) in IN; destruct IN as [EQ|IN]. order.
+ specialize (Ab y IN). order.
+ left; split.
+ rewrite (Ad x). now left.
+ intros y Hy. elim (Em y Hy).
+ Qed.
+
+ Lemma lt_add_lt : forall x1 x2 s1 s1' s2 s2',
+ Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
+ O.lt x1 x2 -> lt s1' s2'.
+ Proof.
+ intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 LT.
+ exists x1; split; [ | right; split]; auto.
+ intros y Hy. rewrite (Ad1 y), (Ad2 y).
+ split; intros [U|U]; try order.
+ specialize (Ab1 y U). order.
+ specialize (Ab2 y U). order.
+ rewrite (Ad1 x1); auto with *.
+ exists x2; repeat split; auto.
+ rewrite (Ad2 x2); now left.
+ intros y. rewrite (Ad2 y). intros [U|U]. order.
+ specialize (Ab2 y U). order.
+ Qed.
+
+ Lemma lt_add_eq : forall x1 x2 s1 s1' s2 s2',
+ Above x1 s1 -> Above x2 s2 -> Add x1 s1 s1' -> Add x2 s2 s2' ->
+ O.eq x1 x2 -> lt s1 s2 -> lt s1' s2'.
+ Proof.
+ intros x1 x2 s1 s1' s2 s2' Ab1 Ab2 Ad1 Ad2 Hx (x & EQ & Disj).
+ assert (O.lt x1 x).
+ destruct Disj as [(IN,_)|(IN,_)]; auto. rewrite Hx; auto.
+ exists x; split.
+ intros z Hz. rewrite (Ad1 z), (Ad2 z).
+ split; intros [U|U]; try (left; order); right.
+ rewrite <- (EQ z); auto.
+ rewrite (EQ z); auto.
+ destruct Disj as [(IN,Em)|(IN & y & INy & LTy & Be)].
+ left; split; auto.
+ rewrite (Ad2 x); auto.
+ intros z. rewrite (Ad1 z); intros [U|U]; try specialize (Ab1 z U); auto; order.
+ right; split; auto.
+ rewrite (Ad1 x); auto.
+ exists y; repeat split; auto.
+ rewrite (Ad2 y); auto.
+ intros z. rewrite (Ad2 z). intros [U|U]; try specialize (Ab2 z U); auto; order.
+ Qed.
+
+End MakeSetOrdering.
+
Module MakeListOrdering (O:OrderedType).
Module MO:=OrderedTypeFacts O.
@@ -663,7 +872,7 @@ Module MakeListOrdering (O:OrderedType).
Definition eq s s' := forall x, In x s <-> In x s'.
- Instance eq_equiv : Equivalence eq.
+ Instance eq_equiv : Equivalence eq := _.
Inductive lt_list : t -> t -> Prop :=
| lt_nil : forall x s, lt_list nil (x :: s)
diff --git a/theories/MSets/MSetList.v b/theories/MSets/MSetList.v
index 48af7e6a..bcf68f1d 100644
--- a/theories/MSets/MSetList.v
+++ b/theories/MSets/MSetList.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library *)
(** This file proposes an implementation of the non-dependant
@@ -788,8 +786,7 @@ Module MakeRaw (X: OrderedType) <: RawSets X.
Definition eq := L.eq.
Definition eq_equiv := L.eq_equiv.
Definition lt l1 l2 :=
- exists l1', exists l2', Ok l1' /\ Ok l2' /\
- eq l1 l1' /\ eq l2 l2' /\ L.lt l1' l2'.
+ exists l1' l2', Ok l1' /\ Ok l2' /\ eq l1 l1' /\ eq l2 l2' /\ L.lt l1' l2'.
Instance lt_strorder : StrictOrder lt.
Proof.
diff --git a/theories/MSets/MSetProperties.v b/theories/MSets/MSetProperties.v
index c0038a4f..0f24d76a 100644
--- a/theories/MSets/MSetProperties.v
+++ b/theories/MSets/MSetProperties.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library *)
(** This functor derives additional properties from [MSetInterface.S].
@@ -339,6 +337,14 @@ Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
Notation NoDup := (NoDupA E.eq).
Notation InA := (InA E.eq).
+ (** Alternative specification via [fold_right] *)
+
+ Lemma fold_spec_right (s:t)(A:Type)(i:A)(f : elt -> A -> A) :
+ fold f s i = List.fold_right f i (rev (elements s)).
+ Proof.
+ rewrite fold_spec. symmetry. apply fold_left_rev_right.
+ Qed.
+
(** ** Induction principles for fold (contributed by S. Lescuyer) *)
(** In the following lemma, the step hypothesis is deliberately restricted
@@ -352,8 +358,7 @@ Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
P s (fold f s i).
Proof.
intros A P f i s Pempty Pstep.
- rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right.
- set (l:=rev (elements s)).
+ rewrite fold_spec_right. set (l:=rev (elements s)).
assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' ->
P s' a -> P s'' (f x a)).
intros; eapply Pstep; eauto.
@@ -425,8 +430,7 @@ Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
R (fold f s i) (fold g s j).
Proof.
intros A B R f g i j s Rempty Rstep.
- do 2 (rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right).
- set (l:=rev (elements s)).
+ rewrite 2 fold_spec_right. set (l:=rev (elements s)).
assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by
(intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto with *).
clearbody l; clear Rstep s.
@@ -484,8 +488,7 @@ Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
split; intros.
rewrite elements_iff; do 2 rewrite InA_alt.
split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
- rewrite fold_left_rev_right.
- apply fold_1.
+ apply fold_spec_right.
Qed.
(** An alternate (and previous) specification for [fold] was based on
@@ -1095,8 +1098,7 @@ Module OrdProperties (M:Sets).
Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
Proof.
intros.
- rewrite !FM.fold_1.
- unfold flip; rewrite <-!fold_left_rev_right.
+ rewrite 2 fold_spec_right.
change (f x (fold_right f i (rev (elements s)))) with
(fold_right f i (rev (x::nil)++rev (elements s))).
apply (@fold_right_eqlistA E.t E.eq A eqA st); auto with *.
@@ -1112,7 +1114,7 @@ Module OrdProperties (M:Sets).
Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)).
Proof.
intros.
- rewrite !FM.fold_1.
+ rewrite !fold_spec.
change (eqA (fold_left (flip f) (elements s') i)
(fold_left (flip f) (x::elements s) i)).
unfold flip; rewrite <-!fold_left_rev_right.
@@ -1133,8 +1135,7 @@ Module OrdProperties (M:Sets).
forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
Proof.
intros.
- rewrite !FM.fold_1.
- unfold flip; rewrite <- !fold_left_rev_right.
+ rewrite 2 fold_spec_right.
apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
apply eqlistA_rev.
apply sort_equivlistA_eqlistA; auto with set.
diff --git a/theories/MSets/MSetToFiniteSet.v b/theories/MSets/MSetToFiniteSet.v
index f0b964cf..e8087bc5 100644
--- a/theories/MSets/MSetToFiniteSet.v
+++ b/theories/MSets/MSetToFiniteSet.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library : conversion to old [Finite_sets] *)
Require Import Ensembles Finite_sets.
diff --git a/theories/MSets/MSetWeakList.v b/theories/MSets/MSetWeakList.v
index 945cb2dd..76f09c76 100644
--- a/theories/MSets/MSetWeakList.v
+++ b/theories/MSets/MSetWeakList.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
(** * Finite sets library *)
(** This file proposes an implementation of the non-dependant
@@ -517,7 +515,7 @@ Module MakeRaw (X:DecidableType) <: WRawSets X.
Definition In := InA X.eq.
Definition eq := Equal.
- Instance eq_equiv : Equivalence eq.
+ Instance eq_equiv : Equivalence eq := _.
End MakeRaw.
diff --git a/theories/MSets/MSets.v b/theories/MSets/MSets.v
index 958e9861..f179bcd1 100644
--- a/theories/MSets/MSets.v
+++ b/theories/MSets/MSets.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id$ *)
-
Require Export Orders.
Require Export OrdersEx.
Require Export OrdersAlt.