summaryrefslogtreecommitdiff
path: root/theories/MSets/MSetToFiniteSet.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/MSets/MSetToFiniteSet.v')
-rw-r--r--theories/MSets/MSetToFiniteSet.v158
1 files changed, 158 insertions, 0 deletions
diff --git a/theories/MSets/MSetToFiniteSet.v b/theories/MSets/MSetToFiniteSet.v
new file mode 100644
index 00000000..f0b964cf
--- /dev/null
+++ b/theories/MSets/MSetToFiniteSet.v
@@ -0,0 +1,158 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library : conversion to old [Finite_sets] *)
+
+Require Import Ensembles Finite_sets.
+Require Import MSetInterface MSetProperties OrdersEx.
+
+(** * Going from [MSets] with usual Leibniz equality
+ to the good old [Ensembles] and [Finite_sets] theory. *)
+
+Module WS_to_Finite_set (U:UsualDecidableType)(M: WSetsOn U).
+ Module MP:= WPropertiesOn U M.
+ Import M MP FM Ensembles Finite_sets.
+
+ Definition mkEns : M.t -> Ensemble M.elt :=
+ fun s x => M.In x s.
+
+ Notation " !! " := mkEns.
+
+ Lemma In_In : forall s x, M.In x s <-> In _ (!!s) x.
+ Proof.
+ unfold In; compute; auto with extcore.
+ Qed.
+
+ Lemma Subset_Included : forall s s', s[<=]s' <-> Included _ (!!s) (!!s').
+ Proof.
+ unfold Subset, Included, In, mkEns; intuition.
+ Qed.
+
+ Notation " a === b " := (Same_set M.elt a b) (at level 70, no associativity).
+
+ Lemma Equal_Same_set : forall s s', s[=]s' <-> !!s === !!s'.
+ Proof.
+ intros.
+ rewrite double_inclusion.
+ unfold Subset, Included, Same_set, In, mkEns; intuition.
+ Qed.
+
+ Lemma empty_Empty_Set : !!M.empty === Empty_set _.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1.
+ Qed.
+
+ Lemma Empty_Empty_set : forall s, Empty s -> !!s === Empty_set _.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intros.
+ destruct(H x H0).
+ inversion H0.
+ Qed.
+
+ Lemma singleton_Singleton : forall x, !!(M.singleton x) === Singleton _ x .
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; try constructor; auto.
+ Qed.
+
+ Lemma union_Union : forall s s', !!(union s s') === Union _ (!!s) (!!s').
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; [ constructor 1 | constructor 2 | | ]; auto.
+ Qed.
+
+ Lemma inter_Intersection : forall s s', !!(inter s s') === Intersection _ (!!s) (!!s').
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; try constructor; auto.
+ Qed.
+
+ Lemma add_Add : forall x s, !!(add x s) === Add _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; auto with sets.
+ inversion H0.
+ constructor 2; constructor.
+ constructor 1; auto.
+ Qed.
+
+ Lemma Add_Add : forall x s s', MP.Add x s s' -> !!s' === Add _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intros.
+ red in H; rewrite H in H0.
+ destruct H0.
+ inversion H0.
+ constructor 2; constructor.
+ constructor 1; auto.
+ red in H; rewrite H.
+ inversion H0; auto.
+ inversion H1; auto.
+ Qed.
+
+ Lemma remove_Subtract : forall x s, !!(remove x s) === Subtract _ (!!s) x.
+ Proof.
+ unfold Same_set, Included, mkEns, In.
+ split; intro; set_iff; inversion 1; auto with sets.
+ split; auto.
+ contradict H1.
+ inversion H1; auto.
+ Qed.
+
+ Lemma mkEns_Finite : forall s, Finite _ (!!s).
+ Proof.
+ intro s; pattern s; apply set_induction; clear s; intros.
+ intros; replace (!!s) with (Empty_set elt); auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Empty_Empty_set; auto.
+ replace (!!s') with (Add _ (!!s) x).
+ constructor 2; auto.
+ symmetry; apply Extensionality_Ensembles.
+ apply Add_Add; auto.
+ Qed.
+
+ Lemma mkEns_cardinal : forall s, cardinal _ (!!s) (M.cardinal s).
+ Proof.
+ intro s; pattern s; apply set_induction; clear s; intros.
+ intros; replace (!!s) with (Empty_set elt); auto with sets.
+ rewrite MP.cardinal_1; auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Empty_Empty_set; auto.
+ replace (!!s') with (Add _ (!!s) x).
+ rewrite (cardinal_2 H0 H1); auto with sets.
+ symmetry; apply Extensionality_Ensembles.
+ apply Add_Add; auto.
+ Qed.
+
+ (** we can even build a function from Finite Ensemble to MSet
+ ... at least in Prop. *)
+
+ Lemma Ens_to_MSet : forall e : Ensemble M.elt, Finite _ e ->
+ exists s:M.t, !!s === e.
+ Proof.
+ induction 1.
+ exists M.empty.
+ apply empty_Empty_Set.
+ destruct IHFinite as (s,Hs).
+ exists (M.add x s).
+ apply Extensionality_Ensembles in Hs.
+ rewrite <- Hs.
+ apply add_Add.
+ Qed.
+
+End WS_to_Finite_set.
+
+
+Module S_to_Finite_set (U:UsualOrderedType)(M: SetsOn U) :=
+ WS_to_Finite_set U M.
+
+