summaryrefslogtreecommitdiff
path: root/theories/MSets/MSetProperties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/MSets/MSetProperties.v')
-rw-r--r--theories/MSets/MSetProperties.v1176
1 files changed, 1176 insertions, 0 deletions
diff --git a/theories/MSets/MSetProperties.v b/theories/MSets/MSetProperties.v
new file mode 100644
index 00000000..c0038a4f
--- /dev/null
+++ b/theories/MSets/MSetProperties.v
@@ -0,0 +1,1176 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id$ *)
+
+(** * Finite sets library *)
+
+(** This functor derives additional properties from [MSetInterface.S].
+ Contrary to the functor in [MSetEqProperties] it uses
+ predicates over sets instead of sets operations, i.e.
+ [In x s] instead of [mem x s=true],
+ [Equal s s'] instead of [equal s s'=true], etc. *)
+
+Require Export MSetInterface.
+Require Import DecidableTypeEx OrdersLists MSetFacts MSetDecide.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Hint Unfold transpose.
+
+(** First, a functor for Weak Sets in functorial version. *)
+
+Module WPropertiesOn (Import E : DecidableType)(M : WSetsOn E).
+ Module Import Dec := WDecideOn E M.
+ Module Import FM := Dec.F (* MSetFacts.WFactsOn E M *).
+ Import M.
+
+ Lemma In_dec : forall x s, {In x s} + {~ In x s}.
+ Proof.
+ intros; generalize (mem_iff s x); case (mem x s); intuition.
+ Qed.
+
+ Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s.
+
+ Lemma Add_Equal : forall x s s', Add x s s' <-> s' [=] add x s.
+ Proof.
+ unfold Add.
+ split; intros.
+ red; intros.
+ rewrite H; clear H.
+ fsetdec.
+ fsetdec.
+ Qed.
+
+ Ltac expAdd := repeat rewrite Add_Equal.
+
+ Section BasicProperties.
+
+ Variable s s' s'' s1 s2 s3 : t.
+ Variable x x' : elt.
+
+ Lemma equal_refl : s[=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma equal_sym : s[=]s' -> s'[=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_refl : s[<=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_equal : s[=]s' -> s[<=]s'.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_empty : empty[<=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
+ Proof. fsetdec. Qed.
+
+ Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
+ Proof. fsetdec. Qed.
+
+ Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
+ Proof. intuition fsetdec. Qed.
+
+ Lemma empty_is_empty_1 : Empty s -> s[=]empty.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_is_empty_2 : s[=]empty -> Empty s.
+ Proof. fsetdec. Qed.
+
+ Lemma add_equal : In x s -> add x s [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma add_add : add x (add x' s) [=] add x' (add x s).
+ Proof. fsetdec. Qed.
+
+ Lemma remove_equal : ~ In x s -> remove x s [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
+ Proof. fsetdec. Qed.
+
+ Lemma add_remove : In x s -> add x (remove x s) [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma singleton_equal_add : singleton x [=] add x empty.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_singleton_empty :
+ In x s -> remove x s [=] empty -> singleton x [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_sym : union s s' [=] union s' s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma add_union_singleton : add x s [=] union (singleton x) s.
+ Proof. fsetdec. Qed.
+
+ Lemma union_add : union (add x s) s' [=] add x (union s s').
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_1 :
+ union (remove x s) (add x s') [=] union (add x s) (remove x s').
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_2 : In x s ->
+ union (remove x s) (add x s') [=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_1 : s [<=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_2 : s' [<=] union s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_union_1 : Empty s -> union s s' [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_union_2 : Empty s -> union s' s [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_sym : inter s s' [=] inter s' s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_inter_1 : Empty s -> Empty (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_1 : inter s s' [<=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_2 : inter s s' [<=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma inter_subset_3 :
+ s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
+ Proof. fsetdec. Qed.
+
+ Lemma empty_diff_1 : Empty s -> Empty (diff s s').
+ Proof. fsetdec. Qed.
+
+ Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_subset : diff s s' [<=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
+ Proof. fsetdec. Qed.
+
+ Lemma remove_diff_singleton :
+ remove x s [=] diff s (singleton x).
+ Proof. fsetdec. Qed.
+
+ Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
+ Proof. fsetdec. Qed.
+
+ Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
+ Proof. fsetdec. Qed.
+
+ Lemma Add_add : Add x s (add x s).
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma Add_remove : In x s -> Add x (remove x s) s.
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma inter_Add :
+ In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma union_Equal :
+ In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
+ Proof. expAdd; fsetdec. Qed.
+
+ Lemma inter_Add_2 :
+ ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
+ Proof. expAdd; fsetdec. Qed.
+
+ End BasicProperties.
+
+ Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
+ Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
+ subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
+ subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
+ remove_equal singleton_equal_add union_subset_equal union_equal_1
+ union_equal_2 union_assoc add_union_singleton union_add union_subset_1
+ union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
+ inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
+ empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
+ empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
+ inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
+ remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
+ Equal_remove add_add : set.
+
+ (** * Properties of elements *)
+
+ Lemma elements_Empty : forall s, Empty s <-> elements s = nil.
+ Proof.
+ intros.
+ unfold Empty.
+ split; intros.
+ assert (forall a, ~ List.In a (elements s)).
+ red; intros.
+ apply (H a).
+ rewrite elements_iff.
+ rewrite InA_alt; exists a; auto with relations.
+ destruct (elements s); auto.
+ elim (H0 e); simpl; auto.
+ red; intros.
+ rewrite elements_iff in H0.
+ rewrite InA_alt in H0; destruct H0.
+ rewrite H in H0; destruct H0 as (_,H0); inversion H0.
+ Qed.
+
+ Lemma elements_empty : elements empty = nil.
+ Proof.
+ rewrite <-elements_Empty; auto with set.
+ Qed.
+
+ (** * Conversions between lists and sets *)
+
+ Definition of_list (l : list elt) := List.fold_right add empty l.
+
+ Definition to_list := elements.
+
+ Lemma of_list_1 : forall l x, In x (of_list l) <-> InA E.eq x l.
+ Proof.
+ induction l; simpl; intro x.
+ rewrite empty_iff, InA_nil. intuition.
+ rewrite add_iff, InA_cons, IHl. intuition.
+ Qed.
+
+ Lemma of_list_2 : forall l, equivlistA E.eq (to_list (of_list l)) l.
+ Proof.
+ unfold to_list; red; intros.
+ rewrite <- elements_iff; apply of_list_1.
+ Qed.
+
+ Lemma of_list_3 : forall s, of_list (to_list s) [=] s.
+ Proof.
+ unfold to_list; red; intros.
+ rewrite of_list_1; symmetry; apply elements_iff.
+ Qed.
+
+ (** * Fold *)
+
+ Section Fold.
+
+ Notation NoDup := (NoDupA E.eq).
+ Notation InA := (InA E.eq).
+
+ (** ** Induction principles for fold (contributed by S. Lescuyer) *)
+
+ (** In the following lemma, the step hypothesis is deliberately restricted
+ to the precise set s we are considering. *)
+
+ Theorem fold_rec :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ (forall s', Empty s' -> P s' i) ->
+ (forall x a s' s'', In x s -> ~In x s' -> Add x s' s'' ->
+ P s' a -> P s'' (f x a)) ->
+ P s (fold f s i).
+ Proof.
+ intros A P f i s Pempty Pstep.
+ rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right.
+ set (l:=rev (elements s)).
+ assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' ->
+ P s' a -> P s'' (f x a)).
+ intros; eapply Pstep; eauto.
+ rewrite elements_iff, <- InA_rev; auto with *.
+ assert (Hdup : NoDup l) by
+ (unfold l; eauto using elements_3w, NoDupA_rev with *).
+ assert (Hsame : forall x, In x s <-> InA x l) by
+ (unfold l; intros; rewrite elements_iff, InA_rev; intuition).
+ clear Pstep; clearbody l; revert s Hsame; induction l.
+ (* empty *)
+ intros s Hsame; simpl.
+ apply Pempty. intro x. rewrite Hsame, InA_nil; intuition.
+ (* step *)
+ intros s Hsame; simpl.
+ apply Pstep' with (of_list l); auto with relations.
+ inversion_clear Hdup; rewrite of_list_1; auto.
+ red. intros. rewrite Hsame, of_list_1, InA_cons; intuition.
+ apply IHl.
+ intros; eapply Pstep'; eauto.
+ inversion_clear Hdup; auto.
+ exact (of_list_1 l).
+ Qed.
+
+ (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
+ case, [P] must be compatible with equality of sets *)
+
+ Theorem fold_rec_bis :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ (forall s s' a, s[=]s' -> P s a -> P s' a) ->
+ (P empty i) ->
+ (forall x a s', In x s -> ~In x s' -> P s' a -> P (add x s') (f x a)) ->
+ P s (fold f s i).
+ Proof.
+ intros A P f i s Pmorphism Pempty Pstep.
+ apply fold_rec; intros.
+ apply Pmorphism with empty; auto with set.
+ rewrite Add_Equal in H1; auto with set.
+ apply Pmorphism with (add x s'); auto with set.
+ Qed.
+
+ Lemma fold_rec_nodep :
+ forall (A:Type)(P : A -> Type)(f : elt -> A -> A)(i:A)(s:t),
+ P i -> (forall x a, In x s -> P a -> P (f x a)) ->
+ P (fold f s i).
+ Proof.
+ intros; apply fold_rec_bis with (P:=fun _ => P); auto.
+ Qed.
+
+ (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
+ the step hypothesis must here be applicable to any [x].
+ At the same time, it looks more like an induction principle,
+ and hence can be easier to use. *)
+
+ Lemma fold_rec_weak :
+ forall (A:Type)(P : t -> A -> Type)(f : elt -> A -> A)(i:A),
+ (forall s s' a, s[=]s' -> P s a -> P s' a) ->
+ P empty i ->
+ (forall x a s, ~In x s -> P s a -> P (add x s) (f x a)) ->
+ forall s, P s (fold f s i).
+ Proof.
+ intros; apply fold_rec_bis; auto.
+ Qed.
+
+ Lemma fold_rel :
+ forall (A B:Type)(R : A -> B -> Type)
+ (f : elt -> A -> A)(g : elt -> B -> B)(i : A)(j : B)(s : t),
+ R i j ->
+ (forall x a b, In x s -> R a b -> R (f x a) (g x b)) ->
+ R (fold f s i) (fold g s j).
+ Proof.
+ intros A B R f g i j s Rempty Rstep.
+ do 2 (rewrite fold_1; unfold flip; rewrite <- fold_left_rev_right).
+ set (l:=rev (elements s)).
+ assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by
+ (intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto with *).
+ clearbody l; clear Rstep s.
+ induction l; simpl; auto with relations.
+ Qed.
+
+ (** From the induction principle on [fold], we can deduce some general
+ induction principles on sets. *)
+
+ Lemma set_induction :
+ forall P : t -> Type,
+ (forall s, Empty s -> P s) ->
+ (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
+ forall s, P s.
+ Proof.
+ intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
+ Qed.
+
+ Lemma set_induction_bis :
+ forall P : t -> Type,
+ (forall s s', s [=] s' -> P s -> P s') ->
+ P empty ->
+ (forall x s, ~In x s -> P s -> P (add x s)) ->
+ forall s, P s.
+ Proof.
+ intros.
+ apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ => tt) tt s); eauto.
+ Qed.
+
+ (** [fold] can be used to reconstruct the same initial set. *)
+
+ Lemma fold_identity : forall s, fold add s empty [=] s.
+ Proof.
+ intros.
+ apply fold_rec with (P:=fun s acc => acc[=]s); auto with set.
+ intros. rewrite H2; rewrite Add_Equal in H1; auto with set.
+ Qed.
+
+ (** ** Alternative (weaker) specifications for [fold] *)
+
+ (** When [MSets] was first designed, the order in which Ocaml's [Set.fold]
+ takes the set elements was unspecified. This specification reflects
+ this fact:
+ *)
+
+ Lemma fold_0 :
+ forall s (A : Type) (i : A) (f : elt -> A -> A),
+ exists l : list elt,
+ NoDup l /\
+ (forall x : elt, In x s <-> InA x l) /\
+ fold f s i = fold_right f i l.
+ Proof.
+ intros; exists (rev (elements s)); split.
+ apply NoDupA_rev; auto with *.
+ split; intros.
+ rewrite elements_iff; do 2 rewrite InA_alt.
+ split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
+ rewrite fold_left_rev_right.
+ apply fold_1.
+ Qed.
+
+ (** An alternate (and previous) specification for [fold] was based on
+ the recursive structure of a set. It is now lemmas [fold_1] and
+ [fold_2]. *)
+
+ Lemma fold_1 :
+ forall s (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Empty s -> eqA (fold f s i) i.
+ Proof.
+ unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
+ rewrite H3; clear H3.
+ generalize H H2; clear H H2; case l; simpl; intros.
+ reflexivity.
+ elim (H e).
+ elim (H2 e); intuition.
+ Qed.
+
+ Lemma fold_2 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ transpose eqA f ->
+ ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
+ Proof.
+ intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
+ destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
+ rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
+ apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
+ eauto with *.
+ rewrite <- Hl1; auto.
+ intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
+ rewrite (H2 a); intuition.
+ Qed.
+
+ (** In fact, [fold] on empty sets is more than equivalent to
+ the initial element, it is Leibniz-equal to it. *)
+
+ Lemma fold_1b :
+ forall s (A : Type)(i : A) (f : elt -> A -> A),
+ Empty s -> (fold f s i) = i.
+ Proof.
+ intros.
+ rewrite FM.fold_1.
+ rewrite elements_Empty in H; rewrite H; simpl; auto.
+ Qed.
+
+ Section Fold_More.
+
+ Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+ Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f)(Ass:transpose eqA f).
+
+ Lemma fold_commutes : forall i s x,
+ eqA (fold f s (f x i)) (f x (fold f s i)).
+ Proof.
+ intros.
+ apply fold_rel with (R:=fun u v => eqA u (f x v)); intros.
+ reflexivity.
+ transitivity (f x0 (f x b)); auto.
+ apply Comp; auto with relations.
+ Qed.
+
+ (** ** Fold is a morphism *)
+
+ Lemma fold_init : forall i i' s, eqA i i' ->
+ eqA (fold f s i) (fold f s i').
+ Proof.
+ intros. apply fold_rel with (R:=eqA); auto.
+ intros; apply Comp; auto with relations.
+ Qed.
+
+ Lemma fold_equal :
+ forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
+ Proof.
+ intros i s; pattern s; apply set_induction; clear s; intros.
+ transitivity i.
+ apply fold_1; auto.
+ symmetry; apply fold_1; auto.
+ rewrite <- H0; auto.
+ transitivity (f x (fold f s i)).
+ apply fold_2 with (eqA := eqA); auto.
+ symmetry; apply fold_2 with (eqA := eqA); auto.
+ unfold Add in *; intros.
+ rewrite <- H2; auto.
+ Qed.
+
+ (** ** Fold and other set operators *)
+
+ Lemma fold_empty : forall i, fold f empty i = i.
+ Proof.
+ intros i; apply fold_1b; auto with set.
+ Qed.
+
+ Lemma fold_add : forall i s x, ~In x s ->
+ eqA (fold f (add x s) i) (f x (fold f s i)).
+ Proof.
+ intros; apply fold_2 with (eqA := eqA); auto with set.
+ Qed.
+
+ Lemma add_fold : forall i s x, In x s ->
+ eqA (fold f (add x s) i) (fold f s i).
+ Proof.
+ intros; apply fold_equal; auto with set.
+ Qed.
+
+ Lemma remove_fold_1: forall i s x, In x s ->
+ eqA (f x (fold f (remove x s) i)) (fold f s i).
+ Proof.
+ intros.
+ symmetry.
+ apply fold_2 with (eqA:=eqA); auto with set relations.
+ Qed.
+
+ Lemma remove_fold_2: forall i s x, ~In x s ->
+ eqA (fold f (remove x s) i) (fold f s i).
+ Proof.
+ intros.
+ apply fold_equal; auto with set.
+ Qed.
+
+ Lemma fold_union_inter : forall i s s',
+ eqA (fold f (union s s') (fold f (inter s s') i))
+ (fold f s (fold f s' i)).
+ Proof.
+ intros; pattern s; apply set_induction; clear s; intros.
+ transitivity (fold f s' (fold f (inter s s') i)).
+ apply fold_equal; auto with set.
+ transitivity (fold f s' i).
+ apply fold_init; auto.
+ apply fold_1; auto with set.
+ symmetry; apply fold_1; auto.
+ rename s'0 into s''.
+ destruct (In_dec x s').
+ (* In x s' *)
+ transitivity (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
+ apply fold_init; auto.
+ apply fold_2 with (eqA:=eqA); auto with set.
+ rewrite inter_iff; intuition.
+ transitivity (f x (fold f s (fold f s' i))).
+ transitivity (fold f (union s s') (f x (fold f (inter s s') i))).
+ apply fold_equal; auto.
+ apply equal_sym; apply union_Equal with x; auto with set.
+ transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
+ apply fold_commutes; auto.
+ apply Comp; auto with relations.
+ symmetry; apply fold_2 with (eqA:=eqA); auto.
+ (* ~(In x s') *)
+ transitivity (f x (fold f (union s s') (fold f (inter s'' s') i))).
+ apply fold_2 with (eqA:=eqA); auto with set.
+ transitivity (f x (fold f (union s s') (fold f (inter s s') i))).
+ apply Comp;auto with relations.
+ apply fold_init;auto.
+ apply fold_equal;auto.
+ apply equal_sym; apply inter_Add_2 with x; auto with set.
+ transitivity (f x (fold f s (fold f s' i))).
+ apply Comp; auto with relations.
+ symmetry; apply fold_2 with (eqA:=eqA); auto.
+ Qed.
+
+ Lemma fold_diff_inter : forall i s s',
+ eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
+ Proof.
+ intros.
+ transitivity (fold f (union (diff s s') (inter s s'))
+ (fold f (inter (diff s s') (inter s s')) i)).
+ symmetry; apply fold_union_inter; auto.
+ transitivity (fold f s (fold f (inter (diff s s') (inter s s')) i)).
+ apply fold_equal; auto with set.
+ apply fold_init; auto.
+ apply fold_1; auto with set.
+ Qed.
+
+ Lemma fold_union: forall i s s',
+ (forall x, ~(In x s/\In x s')) ->
+ eqA (fold f (union s s') i) (fold f s (fold f s' i)).
+ Proof.
+ intros.
+ transitivity (fold f (union s s') (fold f (inter s s') i)).
+ apply fold_init; auto.
+ symmetry; apply fold_1; auto with set.
+ unfold Empty; intro a; generalize (H a); set_iff; tauto.
+ apply fold_union_inter; auto.
+ Qed.
+
+ End Fold_More.
+
+ Lemma fold_plus :
+ forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
+ Proof.
+ intros. apply fold_rel with (R:=fun u v => u = v + p); simpl; auto.
+ Qed.
+
+ End Fold.
+
+ (** * Cardinal *)
+
+ (** ** Characterization of cardinal in terms of fold *)
+
+ Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
+ Proof.
+ intros; rewrite cardinal_1; rewrite FM.fold_1.
+ symmetry; apply fold_left_length; auto.
+ Qed.
+
+ (** ** Old specifications for [cardinal]. *)
+
+ Lemma cardinal_0 :
+ forall s, exists l : list elt,
+ NoDupA E.eq l /\
+ (forall x : elt, In x s <-> InA E.eq x l) /\
+ cardinal s = length l.
+ Proof.
+ intros; exists (elements s); intuition; apply cardinal_1.
+ Qed.
+
+ Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
+ Proof.
+ intros; rewrite cardinal_fold; apply fold_1; auto with *.
+ Qed.
+
+ Lemma cardinal_2 :
+ forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
+ Proof.
+ intros; do 2 rewrite cardinal_fold.
+ change S with ((fun _ => S) x).
+ apply fold_2; auto.
+ split; congruence.
+ congruence.
+ Qed.
+
+ (** ** Cardinal and (non-)emptiness *)
+
+ Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0.
+ Proof.
+ intros.
+ rewrite elements_Empty, FM.cardinal_1.
+ destruct (elements s); intuition; discriminate.
+ Qed.
+
+ Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
+ Proof.
+ intros; rewrite cardinal_Empty; auto.
+ Qed.
+ Hint Resolve cardinal_inv_1.
+
+ Lemma cardinal_inv_2 :
+ forall s n, cardinal s = S n -> { x : elt | In x s }.
+ Proof.
+ intros; rewrite FM.cardinal_1 in H.
+ generalize (elements_2 (s:=s)).
+ destruct (elements s); try discriminate.
+ exists e; auto with relations.
+ Qed.
+
+ Lemma cardinal_inv_2b :
+ forall s, cardinal s <> 0 -> { x : elt | In x s }.
+ Proof.
+ intro; generalize (@cardinal_inv_2 s); destruct cardinal;
+ [intuition|eauto].
+ Qed.
+
+ (** ** Cardinal is a morphism *)
+
+ Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
+ Proof.
+ symmetry.
+ remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H.
+ induction n; intros.
+ apply cardinal_1; rewrite <- H; auto.
+ destruct (cardinal_inv_2 Heqn) as (x,H2).
+ revert Heqn.
+ rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x));
+ auto with set relations.
+ rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x));
+ eauto with set relations.
+ Qed.
+
+ Instance cardinal_m : Proper (Equal==>Logic.eq) cardinal.
+ Proof.
+ exact Equal_cardinal.
+ Qed.
+
+ Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
+
+ (** ** Cardinal and set operators *)
+
+ Lemma empty_cardinal : cardinal empty = 0.
+ Proof.
+ rewrite cardinal_fold; apply fold_1; auto with *.
+ Qed.
+
+ Hint Immediate empty_cardinal cardinal_1 : set.
+
+ Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
+ Proof.
+ intros.
+ rewrite (singleton_equal_add x).
+ replace 0 with (cardinal empty); auto with set.
+ apply cardinal_2 with x; auto with set.
+ Qed.
+
+ Hint Resolve singleton_cardinal: set.
+
+ Lemma diff_inter_cardinal :
+ forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
+ Proof.
+ intros; do 3 rewrite cardinal_fold.
+ rewrite <- fold_plus.
+ apply fold_diff_inter with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma union_cardinal:
+ forall s s', (forall x, ~(In x s/\In x s')) ->
+ cardinal (union s s')=cardinal s+cardinal s'.
+ Proof.
+ intros; do 3 rewrite cardinal_fold.
+ rewrite <- fold_plus.
+ apply fold_union; auto.
+ split; congruence.
+ congruence.
+ Qed.
+
+ Lemma subset_cardinal :
+ forall s s', s[<=]s' -> cardinal s <= cardinal s' .
+ Proof.
+ intros.
+ rewrite <- (diff_inter_cardinal s' s).
+ rewrite (inter_sym s' s).
+ rewrite (inter_subset_equal H); auto with arith.
+ Qed.
+
+ Lemma subset_cardinal_lt :
+ forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
+ Proof.
+ intros.
+ rewrite <- (diff_inter_cardinal s' s).
+ rewrite (inter_sym s' s).
+ rewrite (inter_subset_equal H).
+ generalize (@cardinal_inv_1 (diff s' s)).
+ destruct (cardinal (diff s' s)).
+ intro H2; destruct (H2 (refl_equal _) x).
+ set_iff; auto.
+ intros _.
+ change (0 + cardinal s < S n + cardinal s).
+ apply Plus.plus_lt_le_compat; auto with arith.
+ Qed.
+
+ Theorem union_inter_cardinal :
+ forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
+ Proof.
+ intros.
+ do 4 rewrite cardinal_fold.
+ do 2 rewrite <- fold_plus.
+ apply fold_union_inter with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma union_cardinal_inter :
+ forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
+ Proof.
+ intros.
+ rewrite <- union_inter_cardinal.
+ rewrite Plus.plus_comm.
+ auto with arith.
+ Qed.
+
+ Lemma union_cardinal_le :
+ forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
+ Proof.
+ intros; generalize (union_inter_cardinal s s').
+ intros; rewrite <- H; auto with arith.
+ Qed.
+
+ Lemma add_cardinal_1 :
+ forall s x, In x s -> cardinal (add x s) = cardinal s.
+ Proof.
+ auto with set.
+ Qed.
+
+ Lemma add_cardinal_2 :
+ forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
+ Proof.
+ intros.
+ do 2 rewrite cardinal_fold.
+ change S with ((fun _ => S) x);
+ apply fold_add with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma remove_cardinal_1 :
+ forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
+ Proof.
+ intros.
+ do 2 rewrite cardinal_fold.
+ change S with ((fun _ =>S) x).
+ apply remove_fold_1 with (eqA:=@Logic.eq nat); auto with *.
+ congruence.
+ Qed.
+
+ Lemma remove_cardinal_2 :
+ forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
+ Proof.
+ auto with set.
+ Qed.
+
+ Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
+
+End WPropertiesOn.
+
+(** Now comes variants for self-contained weak sets and for full sets.
+ For these variants, only one argument is necessary. Thanks to
+ the subtyping [WS<=S], the [Properties] functor which is meant to be
+ used on modules [(M:S)] can simply be an alias of [WProperties]. *)
+
+Module WProperties (M:WSets) := WPropertiesOn M.E M.
+Module Properties := WProperties.
+
+
+(** Now comes some properties specific to the element ordering,
+ invalid for Weak Sets. *)
+
+Module OrdProperties (M:Sets).
+ Module Import ME:=OrderedTypeFacts(M.E).
+ Module Import ML:=OrderedTypeLists(M.E).
+ Module Import P := Properties M.
+ Import FM.
+ Import M.E.
+ Import M.
+
+ Hint Resolve elements_spec2.
+ Hint Immediate
+ min_elt_spec1 min_elt_spec2 min_elt_spec3
+ max_elt_spec1 max_elt_spec2 max_elt_spec3 : set.
+
+ (** First, a specialized version of SortA_equivlistA_eqlistA: *)
+ Lemma sort_equivlistA_eqlistA : forall l l' : list elt,
+ sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'.
+ Proof.
+ apply SortA_equivlistA_eqlistA; eauto with *.
+ Qed.
+
+ Definition gtb x y := match E.compare x y with Gt => true | _ => false end.
+ Definition leb x := fun y => negb (gtb x y).
+
+ Definition elements_lt x s := List.filter (gtb x) (elements s).
+ Definition elements_ge x s := List.filter (leb x) (elements s).
+
+ Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x.
+ Proof.
+ intros; rewrite <- compare_gt_iff. unfold gtb.
+ destruct E.compare; intuition; try discriminate.
+ Qed.
+
+ Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x.
+ Proof.
+ intros; rewrite <- compare_gt_iff. unfold leb, gtb.
+ destruct E.compare; intuition; try discriminate.
+ Qed.
+
+ Instance gtb_compat x : Proper (E.eq==>Logic.eq) (gtb x).
+ Proof.
+ intros a b H. unfold gtb. rewrite H; auto.
+ Qed.
+
+ Instance leb_compat x : Proper (E.eq==>Logic.eq) (leb x).
+ Proof.
+ intros a b H; unfold leb. rewrite H; auto.
+ Qed.
+ Hint Resolve gtb_compat leb_compat.
+
+ Lemma elements_split : forall x s,
+ elements s = elements_lt x s ++ elements_ge x s.
+ Proof.
+ unfold elements_lt, elements_ge, leb; intros.
+ eapply (@filter_split _ E.eq); eauto with *.
+ intros.
+ rewrite gtb_1 in H.
+ assert (~E.lt y x).
+ unfold gtb in *; elim_compare x y; intuition;
+ try discriminate; order.
+ order.
+ Qed.
+
+ Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
+ Proof.
+ intros; unfold elements_ge, elements_lt.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto with *.
+ apply (@filter_sort _ E.eq); auto with *; eauto with *.
+ constructor; auto.
+ apply (@filter_sort _ E.eq); auto with *; eauto with *.
+ rewrite Inf_alt by (apply (@filter_sort _ E.eq); eauto with *).
+ intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite leb_1 in H2.
+ rewrite <- elements_iff in H1.
+ assert (~E.eq x y).
+ contradict H; rewrite H; auto.
+ order.
+ intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite gtb_1 in H3.
+ inversion_clear H2.
+ order.
+ rewrite filter_InA in H4; auto with *; destruct H4.
+ rewrite leb_1 in H4.
+ order.
+ red; intros a.
+ rewrite InA_app_iff, InA_cons, !filter_InA, <-!elements_iff,
+ leb_1, gtb_1, (H0 a) by (auto with *).
+ intuition.
+ elim_compare a x; intuition.
+ right; right; split; auto.
+ order.
+ Qed.
+
+ Definition Above x s := forall y, In y s -> E.lt y x.
+ Definition Below x s := forall y, In y s -> E.lt x y.
+
+ Lemma elements_Add_Above : forall s s' x,
+ Above x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements s ++ x::nil).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto with *.
+ intros.
+ invlist InA.
+ rewrite <- elements_iff in H1.
+ setoid_replace y with x; auto.
+ red; intros a.
+ rewrite InA_app_iff, InA_cons, InA_nil, <-!elements_iff, (H0 a)
+ by (auto with *).
+ intuition.
+ Qed.
+
+ Lemma elements_Add_Below : forall s s' x,
+ Below x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (x::elements s).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ change (sort E.lt ((x::nil) ++ elements s)).
+ apply (@SortA_app _ E.eq); auto with *.
+ intros.
+ invlist InA.
+ rewrite <- elements_iff in H2.
+ setoid_replace x0 with x; auto.
+ red; intros a.
+ rewrite InA_cons, <- !elements_iff, (H0 a); intuition.
+ Qed.
+
+ (** Two other induction principles on sets: we can be more restrictive
+ on the element we add at each step. *)
+
+ Lemma set_induction_max :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Above x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (max_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set relations.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@max_elt_spec2 s e y H H0); order.
+
+ assert (H0:=max_elt_spec3 H).
+ rewrite cardinal_Empty in H0; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ Lemma set_induction_min :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Below x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (min_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set relations.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@min_elt_spec2 s e y H H0); order.
+
+ assert (H0:=min_elt_spec3 H).
+ rewrite cardinal_Empty in H0; auto; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ (** More properties of [fold] : behavior with respect to Above/Below *)
+
+ Lemma fold_3 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ unfold flip; rewrite <-!fold_left_rev_right.
+ change (f x (fold_right f i (rev (elements s)))) with
+ (fold_right f i (rev (x::nil)++rev (elements s))).
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto with *.
+ rewrite <- distr_rev.
+ apply eqlistA_rev.
+ apply elements_Add_Above; auto.
+ Qed.
+
+ Lemma fold_4 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Equivalence eqA) (i : A) (f : elt -> A -> A),
+ Proper (E.eq==>eqA==>eqA) f ->
+ Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ change (eqA (fold_left (flip f) (elements s') i)
+ (fold_left (flip f) (x::elements s) i)).
+ unfold flip; rewrite <-!fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply elements_Add_Below; auto.
+ Qed.
+
+ (** The following results have already been proved earlier,
+ but we can now prove them with one hypothesis less:
+ no need for [(transpose eqA f)]. *)
+
+ Section FoldOpt.
+ Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+ Variables (f:elt->A->A)(Comp:Proper (E.eq==>eqA==>eqA) f).
+
+ Lemma fold_equal :
+ forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
+ Proof.
+ intros.
+ rewrite !FM.fold_1.
+ unfold flip; rewrite <- !fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply sort_equivlistA_eqlistA; auto with set.
+ red; intro a; do 2 rewrite <- elements_iff; auto.
+ Qed.
+
+ Lemma add_fold : forall i s x, In x s ->
+ eqA (fold f (add x s) i) (fold f s i).
+ Proof.
+ intros; apply fold_equal; auto with set.
+ Qed.
+
+ Lemma remove_fold_2: forall i s x, ~In x s ->
+ eqA (fold f (remove x s) i) (fold f s i).
+ Proof.
+ intros.
+ apply fold_equal; auto with set.
+ Qed.
+
+ End FoldOpt.
+
+ (** An alternative version of [choose_3] *)
+
+ Lemma choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
+ | Some x, Some x' => E.eq x x'
+ | None, None => True
+ | _, _ => False
+ end.
+ Proof.
+ intros s s' H;
+ generalize (@choose_spec1 s)(@choose_spec2 s)
+ (@choose_spec1 s')(@choose_spec2 s')(@choose_spec3 s s');
+ destruct (choose s); destruct (choose s'); simpl; intuition.
+ apply H5 with e; rewrite <-H; auto.
+ apply H5 with e; rewrite H; auto.
+ Qed.
+
+End OrdProperties.