summaryrefslogtreecommitdiff
path: root/theories/MMaps/MMapFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/MMaps/MMapFacts.v')
-rw-r--r--theories/MMaps/MMapFacts.v2434
1 files changed, 2434 insertions, 0 deletions
diff --git a/theories/MMaps/MMapFacts.v b/theories/MMaps/MMapFacts.v
new file mode 100644
index 00000000..69066a7b
--- /dev/null
+++ b/theories/MMaps/MMapFacts.v
@@ -0,0 +1,2434 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(** * Finite maps library *)
+
+(** This functor derives additional facts from [MMapInterface.S]. These
+ facts are mainly the specifications of [MMapInterface.S] written using
+ different styles: equivalence and boolean equalities.
+*)
+
+Require Import Bool Equalities Orders OrdersFacts OrdersLists.
+Require Import Morphisms Permutation SetoidPermutation.
+Require Export MMapInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Lemma eq_bool_alt b b' : b=b' <-> (b=true <-> b'=true).
+Proof.
+ destruct b, b'; intuition.
+Qed.
+
+Lemma eq_option_alt {elt}(o o':option elt) :
+ o=o' <-> (forall e, o=Some e <-> o'=Some e).
+Proof.
+split; intros.
+- now subst.
+- destruct o, o'; rewrite ?H; auto.
+ symmetry; now apply H.
+Qed.
+
+Lemma option_map_some {A B}(f:A->B) o :
+ option_map f o <> None <-> o <> None.
+Proof.
+ destruct o; simpl. now split. split; now destruct 1.
+Qed.
+
+(** * Properties about weak maps *)
+
+Module WProperties_fun (E:DecidableType)(Import M:WSfun E).
+
+Definition Empty {elt}(m : t elt) := forall x e, ~MapsTo x e m.
+
+(** A few things about E.eq *)
+
+Lemma eq_refl x : E.eq x x. Proof. apply E.eq_equiv. Qed.
+Lemma eq_sym x y : E.eq x y -> E.eq y x. Proof. apply E.eq_equiv. Qed.
+Lemma eq_trans x y z : E.eq x y -> E.eq y z -> E.eq x z.
+Proof. apply E.eq_equiv. Qed.
+Hint Immediate eq_refl eq_sym : map.
+Hint Resolve eq_trans eq_equivalence E.eq_equiv : map.
+
+Definition eqb x y := if E.eq_dec x y then true else false.
+
+Lemma eqb_eq x y : eqb x y = true <-> E.eq x y.
+Proof.
+ unfold eqb; case E.eq_dec; now intuition.
+Qed.
+
+Lemma eqb_sym x y : eqb x y = eqb y x.
+Proof.
+ apply eq_bool_alt. rewrite !eqb_eq. split; apply E.eq_equiv.
+Qed.
+
+(** Initial results about MapsTo and In *)
+
+Lemma mapsto_fun {elt} m x (e e':elt) :
+ MapsTo x e m -> MapsTo x e' m -> e=e'.
+Proof.
+rewrite <- !find_spec. congruence.
+Qed.
+
+Lemma in_find {elt} (m : t elt) x : In x m <-> find x m <> None.
+Proof.
+ unfold In. split.
+ - intros (e,H). rewrite <-find_spec in H. congruence.
+ - destruct (find x m) as [e|] eqn:H.
+ + exists e. now apply find_spec.
+ + now destruct 1.
+Qed.
+
+Lemma not_in_find {elt} (m : t elt) x : ~In x m <-> find x m = None.
+Proof.
+ rewrite in_find. split; auto.
+ intros; destruct (find x m); trivial. now destruct H.
+Qed.
+
+Notation in_find_iff := in_find (only parsing).
+Notation not_find_in_iff := not_in_find (only parsing).
+
+(** * [Equal] is a setoid equality. *)
+
+Infix "==" := Equal (at level 30).
+
+Lemma Equal_refl {elt} (m : t elt) : m == m.
+Proof. red; reflexivity. Qed.
+
+Lemma Equal_sym {elt} (m m' : t elt) : m == m' -> m' == m.
+Proof. unfold Equal; auto. Qed.
+
+Lemma Equal_trans {elt} (m m' m'' : t elt) :
+ m == m' -> m' == m'' -> m == m''.
+Proof. unfold Equal; congruence. Qed.
+
+Instance Equal_equiv {elt} : Equivalence (@Equal elt).
+Proof.
+constructor; [exact Equal_refl | exact Equal_sym | exact Equal_trans].
+Qed.
+
+Arguments Equal {elt} m m'.
+
+Instance MapsTo_m {elt} :
+ Proper (E.eq==>Logic.eq==>Equal==>iff) (@MapsTo elt).
+Proof.
+intros k k' Hk e e' <- m m' Hm. rewrite <- Hk.
+now rewrite <- !find_spec, Hm.
+Qed.
+
+Instance In_m {elt} :
+ Proper (E.eq==>Equal==>iff) (@In elt).
+Proof.
+intros k k' Hk m m' Hm. unfold In.
+split; intros (e,H); exists e; revert H;
+ now rewrite Hk, <- !find_spec, Hm.
+Qed.
+
+Instance find_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@find elt).
+Proof.
+intros k k' Hk m m' <-.
+rewrite eq_option_alt. intros. now rewrite !find_spec, Hk.
+Qed.
+
+Instance mem_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@mem elt).
+Proof.
+intros k k' Hk m m' Hm. now rewrite eq_bool_alt, !mem_spec, Hk, Hm.
+Qed.
+
+Instance Empty_m {elt} : Proper (Equal==>iff) (@Empty elt).
+Proof.
+intros m m' Hm. unfold Empty. now setoid_rewrite Hm.
+Qed.
+
+Instance is_empty_m {elt} : Proper (Equal ==> Logic.eq) (@is_empty elt).
+Proof.
+intros m m' Hm. rewrite eq_bool_alt, !is_empty_spec.
+ now setoid_rewrite Hm.
+Qed.
+
+Instance add_m {elt} : Proper (E.eq==>Logic.eq==>Equal==>Equal) (@add elt).
+Proof.
+intros k k' Hk e e' <- m m' Hm y.
+destruct (E.eq_dec k y) as [H|H].
+- rewrite <-H, add_spec1. now rewrite Hk, add_spec1.
+- rewrite !add_spec2; trivial. now rewrite <- Hk.
+Qed.
+
+Instance remove_m {elt} : Proper (E.eq==>Equal==>Equal) (@remove elt).
+Proof.
+intros k k' Hk m m' Hm y.
+destruct (E.eq_dec k y) as [H|H].
+- rewrite <-H, remove_spec1. now rewrite Hk, remove_spec1.
+- rewrite !remove_spec2; trivial. now rewrite <- Hk.
+Qed.
+
+Instance map_m {elt elt'} :
+ Proper ((Logic.eq==>Logic.eq)==>Equal==>Equal) (@map elt elt').
+Proof.
+intros f f' Hf m m' Hm y. rewrite !map_spec, Hm.
+destruct (find y m'); simpl; trivial. f_equal. now apply Hf.
+Qed.
+
+Instance mapi_m {elt elt'} :
+ Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@mapi elt elt').
+Proof.
+intros f f' Hf m m' Hm y.
+destruct (mapi_spec f m y) as (x,(Hx,->)).
+destruct (mapi_spec f' m' y) as (x',(Hx',->)).
+rewrite <- Hm. destruct (find y m); trivial. simpl.
+f_equal. apply Hf; trivial. now rewrite Hx, Hx'.
+Qed.
+
+Instance merge_m {elt elt' elt''} :
+ Proper ((E.eq==>Logic.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal==>Equal)
+ (@merge elt elt' elt'').
+Proof.
+intros f f' Hf m1 m1' Hm1 m2 m2' Hm2 y.
+destruct (find y m1) as [e1|] eqn:H1.
+- apply find_spec in H1.
+ assert (H : In y m1 \/ In y m2) by (left; now exists e1).
+ destruct (merge_spec1 f H) as (y1,(Hy1,->)).
+ rewrite Hm1,Hm2 in H.
+ destruct (merge_spec1 f' H) as (y2,(Hy2,->)).
+ rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y.
+- destruct (find y m2) as [e2|] eqn:H2.
+ + apply find_spec in H2.
+ assert (H : In y m1 \/ In y m2) by (right; now exists e2).
+ destruct (merge_spec1 f H) as (y1,(Hy1,->)).
+ rewrite Hm1,Hm2 in H.
+ destruct (merge_spec1 f' H) as (y2,(Hy2,->)).
+ rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y.
+ + apply not_in_find in H1. apply not_in_find in H2.
+ assert (H : ~In y (merge f m1 m2)).
+ { intro H. apply merge_spec2 in H. intuition. }
+ apply not_in_find in H. rewrite H.
+ symmetry. apply not_in_find. intro H'.
+ apply merge_spec2 in H'. rewrite <- Hm1, <- Hm2 in H'.
+ intuition.
+Qed.
+
+(* Later: compatibility for cardinal, fold, ... *)
+
+(** ** Earlier specifications (cf. FMaps) *)
+
+Section OldSpecs.
+Variable elt: Type.
+Implicit Type m: t elt.
+Implicit Type x y z: key.
+Implicit Type e: elt.
+
+Lemma MapsTo_1 m x y e : E.eq x y -> MapsTo x e m -> MapsTo y e m.
+Proof.
+ now intros ->.
+Qed.
+
+Lemma find_1 m x e : MapsTo x e m -> find x m = Some e.
+Proof. apply find_spec. Qed.
+
+Lemma find_2 m x e : find x m = Some e -> MapsTo x e m.
+Proof. apply find_spec. Qed.
+
+Lemma mem_1 m x : In x m -> mem x m = true.
+Proof. apply mem_spec. Qed.
+
+Lemma mem_2 m x : mem x m = true -> In x m.
+Proof. apply mem_spec. Qed.
+
+Lemma empty_1 : Empty (@empty elt).
+Proof.
+ intros x e. now rewrite <- find_spec, empty_spec.
+Qed.
+
+Lemma is_empty_1 m : Empty m -> is_empty m = true.
+Proof.
+ unfold Empty; rewrite is_empty_spec. setoid_rewrite <- find_spec.
+ intros H x. specialize (H x).
+ destruct (find x m) as [e|]; trivial.
+ now destruct (H e).
+Qed.
+
+Lemma is_empty_2 m : is_empty m = true -> Empty m.
+Proof.
+ rewrite is_empty_spec. intros H x e. now rewrite <- find_spec, H.
+Qed.
+
+Lemma add_1 m x y e : E.eq x y -> MapsTo y e (add x e m).
+Proof.
+ intros <-. rewrite <-find_spec. apply add_spec1.
+Qed.
+
+Lemma add_2 m x y e e' :
+ ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
+Proof.
+ intro. now rewrite <- !find_spec, add_spec2.
+Qed.
+
+Lemma add_3 m x y e e' :
+ ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
+Proof.
+ intro. rewrite <- !find_spec, add_spec2; trivial.
+Qed.
+
+Lemma remove_1 m x y : E.eq x y -> ~ In y (remove x m).
+Proof.
+ intros <-. apply not_in_find. apply remove_spec1.
+Qed.
+
+Lemma remove_2 m x y e :
+ ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
+Proof.
+ intro. now rewrite <- !find_spec, remove_spec2.
+Qed.
+
+Lemma remove_3bis m x y e :
+ find y (remove x m) = Some e -> find y m = Some e.
+Proof.
+ destruct (E.eq_dec x y) as [<-|H].
+ - now rewrite remove_spec1.
+ - now rewrite remove_spec2.
+Qed.
+
+Lemma remove_3 m x y e : MapsTo y e (remove x m) -> MapsTo y e m.
+Proof.
+ rewrite <-!find_spec. apply remove_3bis.
+Qed.
+
+Lemma bindings_1 m x e :
+ MapsTo x e m -> InA eq_key_elt (x,e) (bindings m).
+Proof. apply bindings_spec1. Qed.
+
+Lemma bindings_2 m x e :
+ InA eq_key_elt (x,e) (bindings m) -> MapsTo x e m.
+Proof. apply bindings_spec1. Qed.
+
+Lemma bindings_3w m : NoDupA eq_key (bindings m).
+Proof. apply bindings_spec2w. Qed.
+
+Lemma cardinal_1 m : cardinal m = length (bindings m).
+Proof. apply cardinal_spec. Qed.
+
+Lemma fold_1 m (A : Type) (i : A) (f : key -> elt -> A -> A) :
+ fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i.
+Proof. apply fold_spec. Qed.
+
+Lemma equal_1 m m' cmp : Equivb cmp m m' -> equal cmp m m' = true.
+Proof. apply equal_spec. Qed.
+
+Lemma equal_2 m m' cmp : equal cmp m m' = true -> Equivb cmp m m'.
+Proof. apply equal_spec. Qed.
+
+End OldSpecs.
+
+Lemma map_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:elt->elt') :
+ MapsTo x e m -> MapsTo x (f e) (map f m).
+Proof.
+ rewrite <- !find_spec, map_spec. now intros ->.
+Qed.
+
+Lemma map_2 {elt elt'}(m: t elt)(x:key)(f:elt->elt') :
+ In x (map f m) -> In x m.
+Proof.
+ rewrite !in_find, map_spec. apply option_map_some.
+Qed.
+
+Lemma mapi_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:key->elt->elt') :
+ MapsTo x e m ->
+ exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
+Proof.
+ destruct (mapi_spec f m x) as (y,(Hy,Eq)).
+ intro H. exists y; split; trivial.
+ rewrite <-find_spec in *. now rewrite Eq, H.
+Qed.
+
+Lemma mapi_2 {elt elt'}(m: t elt)(x:key)(f:key->elt->elt') :
+ In x (mapi f m) -> In x m.
+Proof.
+ destruct (mapi_spec f m x) as (y,(Hy,Eq)).
+ rewrite !in_find. intro H; contradict H. now rewrite Eq, H.
+Qed.
+
+(** The ancestor [map2] of the current [merge] was dealing with functions
+ on datas only, not on keys. *)
+
+Definition map2 {elt elt' elt''} (f:option elt->option elt'->option elt'')
+ := merge (fun _ => f).
+
+Lemma map2_1 {elt elt' elt''}(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt'') :
+ In x m \/ In x m' ->
+ find x (map2 f m m') = f (find x m) (find x m').
+Proof.
+ intros. unfold map2.
+ now destruct (merge_spec1 (fun _ => f) H) as (y,(_,->)).
+Qed.
+
+Lemma map2_2 {elt elt' elt''}(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt'') :
+ In x (map2 f m m') -> In x m \/ In x m'.
+Proof. apply merge_spec2. Qed.
+
+Hint Immediate MapsTo_1 mem_2 is_empty_2
+ map_2 mapi_2 add_3 remove_3 find_2 : map.
+Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1
+ remove_2 find_1 fold_1 map_1 mapi_1 mapi_2 : map.
+
+(** ** Specifications written using equivalences *)
+
+Section IffSpec.
+Variable elt: Type.
+Implicit Type m: t elt.
+Implicit Type x y z: key.
+Implicit Type e: elt.
+
+Lemma in_iff m x y : E.eq x y -> (In x m <-> In y m).
+Proof. now intros ->. Qed.
+
+Lemma mapsto_iff m x y e : E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
+Proof. now intros ->. Qed.
+
+Lemma mem_in_iff m x : In x m <-> mem x m = true.
+Proof. symmetry. apply mem_spec. Qed.
+
+Lemma not_mem_in_iff m x : ~In x m <-> mem x m = false.
+Proof.
+rewrite mem_in_iff; destruct (mem x m); intuition.
+Qed.
+
+Lemma mem_find m x : mem x m = true <-> find x m <> None.
+Proof.
+ rewrite <- mem_in_iff. apply in_find.
+Qed.
+
+Lemma not_mem_find m x : mem x m = false <-> find x m = None.
+Proof.
+ rewrite <- not_mem_in_iff. apply not_in_find.
+Qed.
+
+Lemma In_dec m x : { In x m } + { ~ In x m }.
+Proof.
+ generalize (mem_in_iff m x).
+ destruct (mem x m); [left|right]; intuition.
+Qed.
+
+Lemma find_mapsto_iff m x e : MapsTo x e m <-> find x m = Some e.
+Proof. symmetry. apply find_spec. Qed.
+
+Lemma equal_iff m m' cmp : Equivb cmp m m' <-> equal cmp m m' = true.
+Proof. symmetry. apply equal_spec. Qed.
+
+Lemma empty_mapsto_iff x e : MapsTo x e empty <-> False.
+Proof.
+rewrite <- find_spec, empty_spec. now split.
+Qed.
+
+Lemma not_in_empty x : ~In x (@empty elt).
+Proof.
+intros (e,H). revert H. apply empty_mapsto_iff.
+Qed.
+
+Lemma empty_in_iff x : In x (@empty elt) <-> False.
+Proof.
+split; [ apply not_in_empty | destruct 1 ].
+Qed.
+
+Lemma is_empty_iff m : Empty m <-> is_empty m = true.
+Proof. split; [apply is_empty_1 | apply is_empty_2 ]. Qed.
+
+Lemma add_mapsto_iff m x y e e' :
+ MapsTo y e' (add x e m) <->
+ (E.eq x y /\ e=e') \/
+ (~E.eq x y /\ MapsTo y e' m).
+Proof.
+split.
+- intros H. destruct (E.eq_dec x y); [left|right]; split; trivial.
+ + symmetry. apply (mapsto_fun H); auto with map.
+ + now apply add_3 with x e.
+- destruct 1 as [(H,H')|(H,H')]; subst; auto with map.
+Qed.
+
+Lemma add_mapsto_new m x y e e' : ~In x m ->
+ MapsTo y e' (add x e m) <-> (E.eq x y /\ e=e') \/ MapsTo y e' m.
+Proof.
+ intros.
+ rewrite add_mapsto_iff. intuition.
+ right; split; trivial. contradict H. exists e'. now rewrite H.
+Qed.
+
+Lemma in_add m x y e : In y m -> In y (add x e m).
+Proof.
+ destruct (E.eq_dec x y) as [<-|H'].
+ - now rewrite !in_find, add_spec1.
+ - now rewrite !in_find, add_spec2.
+Qed.
+
+Lemma add_in_iff m x y e : In y (add x e m) <-> E.eq x y \/ In y m.
+Proof.
+split.
+- intros H. destruct (E.eq_dec x y); [now left|right].
+ rewrite in_find, add_spec2 in H; trivial. now apply in_find.
+- intros [<-|H].
+ + exists e. now apply add_1.
+ + now apply in_add.
+Qed.
+
+Lemma add_neq_mapsto_iff m x y e e' :
+ ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
+Proof.
+split; [apply add_3|apply add_2]; auto.
+Qed.
+
+Lemma add_neq_in_iff m x y e :
+ ~ E.eq x y -> (In y (add x e m) <-> In y m).
+Proof.
+split; intros (e',H0); exists e'.
+- now apply add_3 with x e.
+- now apply add_2.
+Qed.
+
+Lemma remove_mapsto_iff m x y e :
+ MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
+Proof.
+split; [split|destruct 1].
+- intro E. revert H. now rewrite <-E, <- find_spec, remove_spec1.
+- now apply remove_3 with x.
+- now apply remove_2.
+Qed.
+
+Lemma remove_in_iff m x y : In y (remove x m) <-> ~E.eq x y /\ In y m.
+Proof.
+unfold In; split; [ intros (e,H) | intros (E,(e,H)) ].
+- apply remove_mapsto_iff in H. destruct H; split; trivial.
+ now exists e.
+- exists e. now apply remove_2.
+Qed.
+
+Lemma remove_neq_mapsto_iff : forall m x y e,
+ ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
+Proof.
+split; [apply remove_3|apply remove_2]; auto.
+Qed.
+
+Lemma remove_neq_in_iff : forall m x y,
+ ~ E.eq x y -> (In y (remove x m) <-> In y m).
+Proof.
+split; intros (e',H0); exists e'.
+- now apply remove_3 with x.
+- now apply remove_2.
+Qed.
+
+Lemma bindings_mapsto_iff m x e :
+ MapsTo x e m <-> InA eq_key_elt (x,e) (bindings m).
+Proof. symmetry. apply bindings_spec1. Qed.
+
+Lemma bindings_in_iff m x :
+ In x m <-> exists e, InA eq_key_elt (x,e) (bindings m).
+Proof.
+unfold In; split; intros (e,H); exists e; now apply bindings_spec1.
+Qed.
+
+End IffSpec.
+
+Lemma map_mapsto_iff {elt elt'} m x b (f : elt -> elt') :
+ MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
+Proof.
+rewrite <-find_spec, map_spec. setoid_rewrite <- find_spec.
+destruct (find x m); simpl; split.
+- injection 1. now exists e.
+- intros (a,(->,H)). now injection H as ->.
+- discriminate.
+- intros (a,(_,H)); discriminate.
+Qed.
+
+Lemma map_in_iff {elt elt'} m x (f : elt -> elt') :
+ In x (map f m) <-> In x m.
+Proof.
+rewrite !in_find, map_spec. apply option_map_some.
+Qed.
+
+Lemma mapi_in_iff {elt elt'} m x (f:key->elt->elt') :
+ In x (mapi f m) <-> In x m.
+Proof.
+rewrite !in_find. destruct (mapi_spec f m x) as (y,(_,->)).
+apply option_map_some.
+Qed.
+
+(** Unfortunately, we don't have simple equivalences for [mapi]
+ and [MapsTo]. The only correct one needs compatibility of [f]. *)
+
+Lemma mapi_inv {elt elt'} m x b (f : key -> elt -> elt') :
+ MapsTo x b (mapi f m) ->
+ exists a y, E.eq y x /\ b = f y a /\ MapsTo x a m.
+Proof.
+rewrite <- find_spec. setoid_rewrite <- find_spec.
+destruct (mapi_spec f m x) as (y,(E,->)).
+destruct (find x m); simpl.
+- injection 1 as <-. now exists e, y.
+- discriminate.
+Qed.
+
+Lemma mapi_spec' {elt elt'} (f:key->elt->elt') :
+ Proper (E.eq==>Logic.eq==>Logic.eq) f ->
+ forall m x,
+ find x (mapi f m) = option_map (f x) (find x m).
+Proof.
+ intros. destruct (mapi_spec f m x) as (y,(Hy,->)).
+ destruct (find x m); simpl; trivial.
+ now rewrite Hy.
+Qed.
+
+Lemma mapi_1bis {elt elt'} m x e (f:key->elt->elt') :
+ Proper (E.eq==>Logic.eq==>Logic.eq) f ->
+ MapsTo x e m -> MapsTo x (f x e) (mapi f m).
+Proof.
+intros. destruct (mapi_1 f H0) as (y,(->,H2)). trivial.
+Qed.
+
+Lemma mapi_mapsto_iff {elt elt'} m x b (f:key->elt->elt') :
+ Proper (E.eq==>Logic.eq==>Logic.eq) f ->
+ (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
+Proof.
+rewrite <-find_spec. setoid_rewrite <-find_spec.
+intros Pr. rewrite mapi_spec' by trivial.
+destruct (find x m); simpl; split.
+- injection 1 as <-. now exists e.
+- intros (a,(->,H)). now injection H as <-.
+- discriminate.
+- intros (a,(_,H)). discriminate.
+Qed.
+
+(** Things are even worse for [merge] : we don't try to state any
+ equivalence, see instead boolean results below. *)
+
+(** Useful tactic for simplifying expressions like
+ [In y (add x e (remove z m))] *)
+
+Ltac map_iff :=
+ repeat (progress (
+ rewrite add_mapsto_iff || rewrite add_in_iff ||
+ rewrite remove_mapsto_iff || rewrite remove_in_iff ||
+ rewrite empty_mapsto_iff || rewrite empty_in_iff ||
+ rewrite map_mapsto_iff || rewrite map_in_iff ||
+ rewrite mapi_in_iff)).
+
+(** ** Specifications written using boolean predicates *)
+
+Section BoolSpec.
+
+Lemma mem_find_b {elt}(m:t elt)(x:key) :
+ mem x m = if find x m then true else false.
+Proof.
+apply eq_bool_alt. rewrite mem_find. destruct (find x m).
+- now split.
+- split; (discriminate || now destruct 1).
+Qed.
+
+Variable elt elt' elt'' : Type.
+Implicit Types m : t elt.
+Implicit Types x y z : key.
+Implicit Types e : elt.
+
+Lemma mem_b m x y : E.eq x y -> mem x m = mem y m.
+Proof. now intros ->. Qed.
+
+Lemma find_o m x y : E.eq x y -> find x m = find y m.
+Proof. now intros ->. Qed.
+
+Lemma empty_o x : find x (@empty elt) = None.
+Proof. apply empty_spec. Qed.
+
+Lemma empty_a x : mem x (@empty elt) = false.
+Proof. apply not_mem_find. apply empty_spec. Qed.
+
+Lemma add_eq_o m x y e :
+ E.eq x y -> find y (add x e m) = Some e.
+Proof.
+ intros <-. apply add_spec1.
+Qed.
+
+Lemma add_neq_o m x y e :
+ ~ E.eq x y -> find y (add x e m) = find y m.
+Proof. apply add_spec2. Qed.
+Hint Resolve add_neq_o : map.
+
+Lemma add_o m x y e :
+ find y (add x e m) = if E.eq_dec x y then Some e else find y m.
+Proof.
+destruct (E.eq_dec x y); auto with map.
+Qed.
+
+Lemma add_eq_b m x y e :
+ E.eq x y -> mem y (add x e m) = true.
+Proof.
+intros <-. apply mem_spec, add_in_iff. now left.
+Qed.
+
+Lemma add_neq_b m x y e :
+ ~E.eq x y -> mem y (add x e m) = mem y m.
+Proof.
+intros. now rewrite !mem_find_b, add_neq_o.
+Qed.
+
+Lemma add_b m x y e :
+ mem y (add x e m) = eqb x y || mem y m.
+Proof.
+rewrite !mem_find_b, add_o. unfold eqb.
+now destruct (E.eq_dec x y).
+Qed.
+
+Lemma remove_eq_o m x y :
+ E.eq x y -> find y (remove x m) = None.
+Proof. intros ->. apply remove_spec1. Qed.
+
+Lemma remove_neq_o m x y :
+ ~ E.eq x y -> find y (remove x m) = find y m.
+Proof. apply remove_spec2. Qed.
+
+Hint Resolve remove_eq_o remove_neq_o : map.
+
+Lemma remove_o m x y :
+ find y (remove x m) = if E.eq_dec x y then None else find y m.
+Proof.
+destruct (E.eq_dec x y); auto with map.
+Qed.
+
+Lemma remove_eq_b m x y :
+ E.eq x y -> mem y (remove x m) = false.
+Proof.
+intros <-. now rewrite mem_find_b, remove_eq_o.
+Qed.
+
+Lemma remove_neq_b m x y :
+ ~ E.eq x y -> mem y (remove x m) = mem y m.
+Proof.
+intros. now rewrite !mem_find_b, remove_neq_o.
+Qed.
+
+Lemma remove_b m x y :
+ mem y (remove x m) = negb (eqb x y) && mem y m.
+Proof.
+rewrite !mem_find_b, remove_o; unfold eqb.
+now destruct (E.eq_dec x y).
+Qed.
+
+Lemma map_o m x (f:elt->elt') :
+ find x (map f m) = option_map f (find x m).
+Proof. apply map_spec. Qed.
+
+Lemma map_b m x (f:elt->elt') :
+ mem x (map f m) = mem x m.
+Proof.
+rewrite !mem_find_b, map_o. now destruct (find x m).
+Qed.
+
+Lemma mapi_b m x (f:key->elt->elt') :
+ mem x (mapi f m) = mem x m.
+Proof.
+apply eq_bool_alt; rewrite !mem_spec. apply mapi_in_iff.
+Qed.
+
+Lemma mapi_o m x (f:key->elt->elt') :
+ Proper (E.eq==>Logic.eq==>Logic.eq) f ->
+ find x (mapi f m) = option_map (f x) (find x m).
+Proof. intros; now apply mapi_spec'. Qed.
+
+Lemma merge_spec1' (f:key->option elt->option elt'->option elt'') :
+ Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f ->
+ forall (m:t elt)(m':t elt') x,
+ In x m \/ In x m' ->
+ find x (merge f m m') = f x (find x m) (find x m').
+Proof.
+ intros Hf m m' x H.
+ now destruct (merge_spec1 f H) as (y,(->,->)).
+Qed.
+
+Lemma merge_spec1_none (f:key->option elt->option elt'->option elt'') :
+ (forall x, f x None None = None) ->
+ forall (m: t elt)(m': t elt') x,
+ exists y, E.eq y x /\ find x (merge f m m') = f y (find x m) (find x m').
+Proof.
+intros Hf m m' x.
+destruct (find x m) as [e|] eqn:Hm.
+- assert (H : In x m \/ In x m') by (left; exists e; now apply find_spec).
+ destruct (merge_spec1 f H) as (y,(Hy,->)).
+ exists y; split; trivial. now rewrite Hm.
+- destruct (find x m') as [e|] eqn:Hm'.
+ + assert (H : In x m \/ In x m') by (right; exists e; now apply find_spec).
+ destruct (merge_spec1 f H) as (y,(Hy,->)).
+ exists y; split; trivial. now rewrite Hm, Hm'.
+ + exists x. split. reflexivity. rewrite Hf.
+ apply not_in_find. intro H.
+ apply merge_spec2 in H. apply not_in_find in Hm. apply not_in_find in Hm'.
+ intuition.
+Qed.
+
+Lemma merge_spec1'_none (f:key->option elt->option elt'->option elt'') :
+ Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f ->
+ (forall x, f x None None = None) ->
+ forall (m: t elt)(m': t elt') x,
+ find x (merge f m m') = f x (find x m) (find x m').
+Proof.
+ intros Hf Hf' m m' x.
+ now destruct (merge_spec1_none Hf' m m' x) as (y,(->,->)).
+Qed.
+
+Lemma bindings_o : forall m x,
+ find x m = findA (eqb x) (bindings m).
+Proof.
+intros. rewrite eq_option_alt. intro e.
+rewrite <- find_mapsto_iff, bindings_mapsto_iff.
+unfold eqb.
+rewrite <- findA_NoDupA; dintuition; try apply bindings_3w; eauto.
+Qed.
+
+Lemma bindings_b : forall m x,
+ mem x m = existsb (fun p => eqb x (fst p)) (bindings m).
+Proof.
+intros.
+apply eq_bool_alt.
+rewrite mem_spec, bindings_in_iff, existsb_exists.
+split.
+- intros (e,H).
+ rewrite InA_alt in H.
+ destruct H as ((k,e'),((H1,H2),H')); simpl in *; subst e'.
+ exists (k, e); split; trivial. simpl. now apply eqb_eq.
+- intros ((k,e),(H,H')); simpl in *. apply eqb_eq in H'.
+ exists e. rewrite InA_alt. exists (k,e). now repeat split.
+Qed.
+
+End BoolSpec.
+
+Section Equalities.
+Variable elt:Type.
+
+(** A few basic equalities *)
+
+Lemma eq_empty (m: t elt) : m == empty <-> is_empty m = true.
+Proof.
+ unfold Equal. rewrite is_empty_spec. now setoid_rewrite empty_spec.
+Qed.
+
+Lemma add_id (m: t elt) x e : add x e m == m <-> find x m = Some e.
+Proof.
+ split.
+ - intros H. rewrite <- (H x). apply add_spec1.
+ - intros H y. rewrite !add_o. now destruct E.eq_dec as [<-|E].
+Qed.
+
+Lemma add_add_1 (m: t elt) x e :
+ add x e (add x e m) == add x e m.
+Proof.
+ intros y. rewrite !add_o. destruct E.eq_dec; auto.
+Qed.
+
+Lemma add_add_2 (m: t elt) x x' e e' :
+ ~E.eq x x' -> add x e (add x' e' m) == add x' e' (add x e m).
+Proof.
+ intros H y. rewrite !add_o.
+ do 2 destruct E.eq_dec; auto.
+ elim H. now transitivity y.
+Qed.
+
+Lemma remove_id (m: t elt) x : remove x m == m <-> ~In x m.
+Proof.
+ rewrite not_in_find. split.
+ - intros H. rewrite <- (H x). apply remove_spec1.
+ - intros H y. rewrite !remove_o. now destruct E.eq_dec as [<-|E].
+Qed.
+
+Lemma remove_remove_1 (m: t elt) x :
+ remove x (remove x m) == remove x m.
+Proof.
+ intros y. rewrite !remove_o. destruct E.eq_dec; auto.
+Qed.
+
+Lemma remove_remove_2 (m: t elt) x x' :
+ remove x (remove x' m) == remove x' (remove x m).
+Proof.
+ intros y. rewrite !remove_o. do 2 destruct E.eq_dec; auto.
+Qed.
+
+Lemma remove_add_1 (m: t elt) x e :
+ remove x (add x e m) == remove x m.
+Proof.
+ intro y. rewrite !remove_o, !add_o. now destruct E.eq_dec.
+Qed.
+
+Lemma remove_add_2 (m: t elt) x x' e :
+ ~E.eq x x' -> remove x' (add x e m) == add x e (remove x' m).
+Proof.
+ intros H y. rewrite !remove_o, !add_o.
+ do 2 destruct E.eq_dec; auto.
+ - elim H; now transitivity y.
+ - symmetry. now apply remove_eq_o.
+ - symmetry. now apply remove_neq_o.
+Qed.
+
+Lemma add_remove_1 (m: t elt) x e :
+ add x e (remove x m) == add x e m.
+Proof.
+ intro y. rewrite !add_o, !remove_o. now destruct E.eq_dec.
+Qed.
+
+(** Another characterisation of [Equal] *)
+
+Lemma Equal_mapsto_iff : forall m1 m2 : t elt,
+ m1 == m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2).
+Proof.
+intros m1 m2. split; [intros Heq k e|intros Hiff].
+rewrite 2 find_mapsto_iff, Heq. split; auto.
+intro k. rewrite eq_option_alt. intro e.
+rewrite <- 2 find_mapsto_iff; auto.
+Qed.
+
+(** * Relations between [Equal], [Equiv] and [Equivb]. *)
+
+(** First, [Equal] is [Equiv] with Leibniz on elements. *)
+
+Lemma Equal_Equiv : forall (m m' : t elt),
+ m == m' <-> Equiv Logic.eq m m'.
+Proof.
+intros. rewrite Equal_mapsto_iff. split; intros.
+- split.
+ + split; intros (e,Hin); exists e; [rewrite <- H|rewrite H]; auto.
+ + intros; apply mapsto_fun with m k; auto; rewrite H; auto.
+- split; intros H'.
+ + destruct H.
+ assert (Hin : In k m') by (rewrite <- H; exists e; auto).
+ destruct Hin as (e',He').
+ rewrite (H0 k e e'); auto.
+ + destruct H.
+ assert (Hin : In k m) by (rewrite H; exists e; auto).
+ destruct Hin as (e',He').
+ rewrite <- (H0 k e' e); auto.
+Qed.
+
+(** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp]
+ are related. *)
+
+Section Cmp.
+Variable eq_elt : elt->elt->Prop.
+Variable cmp : elt->elt->bool.
+
+Definition compat_cmp :=
+ forall e e', cmp e e' = true <-> eq_elt e e'.
+
+Lemma Equiv_Equivb : compat_cmp ->
+ forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'.
+Proof.
+ unfold Equivb, Equiv, Cmp; intuition.
+ red in H; rewrite H; eauto.
+ red in H; rewrite <-H; eauto.
+Qed.
+End Cmp.
+
+(** Composition of the two last results: relation between [Equal]
+ and [Equivb]. *)
+
+Lemma Equal_Equivb : forall cmp,
+ (forall e e', cmp e e' = true <-> e = e') ->
+ forall (m m':t elt), m == m' <-> Equivb cmp m m'.
+Proof.
+ intros; rewrite Equal_Equiv.
+ apply Equiv_Equivb; auto.
+Qed.
+
+Lemma Equal_Equivb_eqdec :
+ forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }),
+ let cmp := fun e e' => if eq_elt_dec e e' then true else false in
+ forall (m m':t elt), m == m' <-> Equivb cmp m m'.
+Proof.
+intros; apply Equal_Equivb.
+unfold cmp; clear cmp; intros.
+destruct eq_elt_dec; now intuition.
+Qed.
+
+End Equalities.
+
+(** * Results about [fold], [bindings], induction principles... *)
+
+Section Elt.
+ Variable elt:Type.
+
+ Definition Add x (e:elt) m m' := m' == (add x e m).
+
+ Notation eqke := (@eq_key_elt elt).
+ Notation eqk := (@eq_key elt).
+
+ Instance eqk_equiv : Equivalence eqk.
+ Proof. unfold eq_key. destruct E.eq_equiv. constructor; eauto. Qed.
+
+ Instance eqke_equiv : Equivalence eqke.
+ Proof.
+ unfold eq_key_elt; split; repeat red; intuition; simpl in *;
+ etransitivity; eauto.
+ Qed.
+
+ (** Complements about InA, NoDupA and findA *)
+
+ Lemma InA_eqke_eqk k k' e e' l :
+ E.eq k k' -> InA eqke (k,e) l -> InA eqk (k',e') l.
+ Proof.
+ intros Hk. rewrite 2 InA_alt.
+ intros ((k'',e'') & (Hk'',He'') & H); simpl in *; subst e''.
+ exists (k'',e); split; auto. red; simpl. now transitivity k.
+ Qed.
+
+ Lemma NoDupA_incl {A} (R R':relation A) :
+ (forall x y, R x y -> R' x y) ->
+ forall l, NoDupA R' l -> NoDupA R l.
+ Proof.
+ intros Incl.
+ induction 1 as [ | a l E _ IH ]; constructor; auto.
+ contradict E. revert E. rewrite 2 InA_alt. firstorder.
+ Qed.
+
+ Lemma NoDupA_eqk_eqke l : NoDupA eqk l -> NoDupA eqke l.
+ Proof.
+ apply NoDupA_incl. now destruct 1.
+ Qed.
+
+ Lemma findA_rev l k : NoDupA eqk l ->
+ findA (eqb k) l = findA (eqb k) (rev l).
+ Proof.
+ intros H. apply eq_option_alt. intros e. unfold eqb.
+ rewrite <- !findA_NoDupA, InA_rev; eauto with map. reflexivity.
+ change (NoDupA eqk (rev l)). apply NoDupA_rev; auto using eqk_equiv.
+ Qed.
+
+ (** * Bindings *)
+
+ Lemma bindings_Empty (m:t elt) : Empty m <-> bindings m = nil.
+ Proof.
+ unfold Empty. split; intros H.
+ - assert (H' : forall a, ~ List.In a (bindings m)).
+ { intros (k,e) H'. apply (H k e).
+ rewrite bindings_mapsto_iff, InA_alt.
+ exists (k,e); repeat split; auto with map. }
+ destruct (bindings m) as [|p l]; trivial.
+ destruct (H' p); simpl; auto.
+ - intros x e. rewrite bindings_mapsto_iff, InA_alt.
+ rewrite H. now intros (y,(E,H')).
+ Qed.
+
+ Lemma bindings_empty : bindings (@empty elt) = nil.
+ Proof.
+ rewrite <-bindings_Empty; apply empty_1.
+ Qed.
+
+ (** * Conversions between maps and association lists. *)
+
+ Definition uncurry {U V W : Type} (f : U -> V -> W) : U*V -> W :=
+ fun p => f (fst p) (snd p).
+
+ Definition of_list :=
+ List.fold_right (uncurry (@add _)) (@empty elt).
+
+ Definition to_list := bindings.
+
+ Lemma of_list_1 : forall l k e,
+ NoDupA eqk l ->
+ (MapsTo k e (of_list l) <-> InA eqke (k,e) l).
+ Proof.
+ induction l as [|(k',e') l IH]; simpl; intros k e Hnodup.
+ - rewrite empty_mapsto_iff, InA_nil; intuition.
+ - unfold uncurry; simpl.
+ inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
+ specialize (IH k e Hnodup'); clear Hnodup'.
+ rewrite add_mapsto_iff, InA_cons, <- IH.
+ unfold eq_key_elt at 1; simpl.
+ split; destruct 1 as [H|H]; try (intuition;fail).
+ destruct (E.eq_dec k k'); [left|right]; split; auto with map.
+ contradict Hnotin.
+ apply InA_eqke_eqk with k e; intuition.
+ Qed.
+
+ Lemma of_list_1b : forall l k,
+ NoDupA eqk l ->
+ find k (of_list l) = findA (eqb k) l.
+ Proof.
+ induction l as [|(k',e') l IH]; simpl; intros k Hnodup.
+ apply empty_o.
+ unfold uncurry; simpl.
+ inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
+ specialize (IH k Hnodup'); clear Hnodup'.
+ rewrite add_o, IH, eqb_sym. unfold eqb; now destruct E.eq_dec.
+ Qed.
+
+ Lemma of_list_2 : forall l, NoDupA eqk l ->
+ equivlistA eqke l (to_list (of_list l)).
+ Proof.
+ intros l Hnodup (k,e).
+ rewrite <- bindings_mapsto_iff, of_list_1; intuition.
+ Qed.
+
+ Lemma of_list_3 : forall s, Equal (of_list (to_list s)) s.
+ Proof.
+ intros s k.
+ rewrite of_list_1b, bindings_o; auto.
+ apply bindings_3w.
+ Qed.
+
+ (** * Fold *)
+
+ (** Alternative specification via [fold_right] *)
+
+ Lemma fold_spec_right m (A:Type)(i:A)(f : key -> elt -> A -> A) :
+ fold f m i = List.fold_right (uncurry f) i (rev (bindings m)).
+ Proof.
+ rewrite fold_1. symmetry. apply fold_left_rev_right.
+ Qed.
+
+ (** ** Induction principles about fold contributed by S. Lescuyer *)
+
+ (** In the following lemma, the step hypothesis is deliberately restricted
+ to the precise map m we are considering. *)
+
+ Lemma fold_rec :
+ forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
+ forall (i:A)(m:t elt),
+ (forall m, Empty m -> P m i) ->
+ (forall k e a m' m'', MapsTo k e m -> ~In k m' ->
+ Add k e m' m'' -> P m' a -> P m'' (f k e a)) ->
+ P m (fold f m i).
+ Proof.
+ intros A P f i m Hempty Hstep.
+ rewrite fold_spec_right.
+ set (F:=uncurry f).
+ set (l:=rev (bindings m)).
+ assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' ->
+ Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)).
+ {
+ intros k e a m' m'' H ? ? ?; eapply Hstep; eauto.
+ revert H; unfold l; rewrite InA_rev, bindings_mapsto_iff; auto with *. }
+ assert (Hdup : NoDupA eqk l).
+ { unfold l. apply NoDupA_rev; try red; unfold eq_key ; eauto with *.
+ apply bindings_3w. }
+ assert (Hsame : forall k, find k m = findA (eqb k) l).
+ { intros k. unfold l. rewrite bindings_o, findA_rev; auto.
+ apply bindings_3w. }
+ clearbody l. clearbody F. clear Hstep f. revert m Hsame. induction l.
+ - (* empty *)
+ intros m Hsame; simpl.
+ apply Hempty. intros k e.
+ rewrite find_mapsto_iff, Hsame; simpl; discriminate.
+ - (* step *)
+ intros m Hsame; destruct a as (k,e); simpl.
+ apply Hstep' with (of_list l); auto.
+ + rewrite InA_cons; left; red; auto with map.
+ + inversion_clear Hdup. contradict H. destruct H as (e',He').
+ apply InA_eqke_eqk with k e'; auto with map.
+ rewrite <- of_list_1; auto.
+ + intro k'. rewrite Hsame, add_o, of_list_1b. simpl.
+ rewrite eqb_sym. unfold eqb. now destruct E.eq_dec.
+ inversion_clear Hdup; auto with map.
+ + apply IHl.
+ * intros; eapply Hstep'; eauto.
+ * inversion_clear Hdup; auto.
+ * intros; apply of_list_1b. inversion_clear Hdup; auto.
+ Qed.
+
+ (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this
+ case, [P] must be compatible with equality of sets *)
+
+ Theorem fold_rec_bis :
+ forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A),
+ forall (i:A)(m:t elt),
+ (forall m m' a, Equal m m' -> P m a -> P m' a) ->
+ (P empty i) ->
+ (forall k e a m', MapsTo k e m -> ~In k m' ->
+ P m' a -> P (add k e m') (f k e a)) ->
+ P m (fold f m i).
+ Proof.
+ intros A P f i m Pmorphism Pempty Pstep.
+ apply fold_rec; intros.
+ apply Pmorphism with empty; auto. intro k. rewrite empty_o.
+ case_eq (find k m0); auto; intros e'; rewrite <- find_mapsto_iff.
+ intro H'; elim (H k e'); auto.
+ apply Pmorphism with (add k e m'); try intro; auto.
+ Qed.
+
+ Lemma fold_rec_nodep :
+ forall (A:Type)(P : A -> Type)(f : key -> elt -> A -> A)(i:A)(m:t elt),
+ P i -> (forall k e a, MapsTo k e m -> P a -> P (f k e a)) ->
+ P (fold f m i).
+ Proof.
+ intros; apply fold_rec_bis with (P:=fun _ => P); auto.
+ Qed.
+
+ (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] :
+ the step hypothesis must here be applicable anywhere.
+ At the same time, it looks more like an induction principle,
+ and hence can be easier to use. *)
+
+ Lemma fold_rec_weak :
+ forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A)(i:A),
+ (forall m m' a, Equal m m' -> P m a -> P m' a) ->
+ P empty i ->
+ (forall k e a m, ~In k m -> P m a -> P (add k e m) (f k e a)) ->
+ forall m, P m (fold f m i).
+ Proof.
+ intros; apply fold_rec_bis; auto.
+ Qed.
+
+ Lemma fold_rel :
+ forall (A B:Type)(R : A -> B -> Type)
+ (f : key -> elt -> A -> A)(g : key -> elt -> B -> B)(i : A)(j : B)
+ (m : t elt),
+ R i j ->
+ (forall k e a b, MapsTo k e m -> R a b -> R (f k e a) (g k e b)) ->
+ R (fold f m i) (fold g m j).
+ Proof.
+ intros A B R f g i j m Rempty Rstep.
+ rewrite 2 fold_spec_right. set (l:=rev (bindings m)).
+ assert (Rstep' : forall k e a b, InA eqke (k,e) l ->
+ R a b -> R (f k e a) (g k e b)).
+ { intros; apply Rstep; auto.
+ rewrite bindings_mapsto_iff, <- InA_rev; auto with map. }
+ clearbody l; clear Rstep m.
+ induction l; simpl; auto.
+ apply Rstep'; auto.
+ destruct a; simpl; rewrite InA_cons; left; red; auto with map.
+ Qed.
+
+ (** From the induction principle on [fold], we can deduce some general
+ induction principles on maps. *)
+
+ Lemma map_induction :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
+ Qed.
+
+ Lemma map_induction_bis :
+ forall P : t elt -> Type,
+ (forall m m', Equal m m' -> P m -> P m') ->
+ P empty ->
+ (forall x e m, ~In x m -> P m -> P (add x e m)) ->
+ forall m, P m.
+ Proof.
+ intros.
+ apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto.
+ Qed.
+
+ (** [fold] can be used to reconstruct the same initial set. *)
+
+ Lemma fold_identity : forall m : t elt, Equal (fold (@add _) m empty) m.
+ Proof.
+ intros.
+ apply fold_rec with (P:=fun m acc => Equal acc m); auto with map.
+ intros m' Heq k'.
+ rewrite empty_o.
+ case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff.
+ intro; elim (Heq k' e'); auto.
+ intros k e a m' m'' _ _ Hadd Heq k'.
+ red in Heq. rewrite Hadd, 2 add_o, Heq; auto.
+ Qed.
+
+ Section Fold_More.
+
+ (** ** Additional properties of fold *)
+
+ (** When a function [f] is compatible and allows transpositions, we can
+ compute [fold f] in any order. *)
+
+ Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
+
+ Lemma fold_Empty (f:key->elt->A->A) :
+ forall m i, Empty m -> eqA (fold f m i) i.
+ Proof.
+ intros. apply fold_rec_nodep with (P:=fun a => eqA a i).
+ reflexivity.
+ intros. elim (H k e); auto.
+ Qed.
+
+ Lemma fold_init (f:key->elt->A->A) :
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i').
+ Proof.
+ intros Hf m i i' Hi. apply fold_rel with (R:=eqA); auto.
+ intros. now apply Hf.
+ Qed.
+
+ (** Transpositions of f (a.k.a diamond property).
+ Could we swap two sequential calls to f, i.e. do we have:
+
+ f k e (f k' e' a) == f k' e' (f k e a)
+
+ First, we do no need this equation for all keys, but only
+ when k and k' aren't equal, as suggested by Pierre Castéran.
+ Think for instance of [f] being [M.add] : in general, we don't have
+ [M.add k e (M.add k e' m) == M.add k e' (M.add k e m)].
+ Fortunately, we will never encounter this situation during a real
+ [fold], since the keys received by this [fold] are unique.
+ NB: without this condition, this condition would be
+ [SetoidList.transpose2].
+
+ Secondly, instead of the equation above, we now use a statement
+ with more basic equalities, allowing to prove [fold_commutes] even
+ when [f] isn't a morphism.
+ NB: When [f] is a morphism, [Diamond f] gives back the equation above.
+*)
+
+ Definition Diamond (f:key->elt->A->A) :=
+ forall k k' e e' a b b', ~E.eq k k' ->
+ eqA (f k e a) b -> eqA (f k' e' a) b' -> eqA (f k e b') (f k' e' b).
+
+ Lemma fold_commutes (f:key->elt->A->A) :
+ Diamond f ->
+ forall i m k e, ~In k m ->
+ eqA (fold f m (f k e i)) (f k e (fold f m i)).
+ Proof.
+ intros Hf i m k e H.
+ apply fold_rel with (R:= fun a b => eqA a (f k e b)); auto.
+ - reflexivity.
+ - intros k' e' b a Hm E.
+ apply Hf with a; try easy.
+ contradict H; rewrite <- H. now exists e'.
+ Qed.
+
+ Hint Resolve NoDupA_eqk_eqke NoDupA_rev bindings_3w : map.
+
+ Lemma fold_Proper (f:key->elt->A->A) :
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Diamond f ->
+ Proper (Equal==>eqA==>eqA) (fold f).
+ Proof.
+ intros Hf Hf' m1 m2 Hm i j Hi.
+ rewrite 2 fold_spec_right.
+ assert (NoDupA eqk (rev (bindings m1))) by (auto with * ).
+ assert (NoDupA eqk (rev (bindings m2))) by (auto with * ).
+ apply fold_right_equivlistA_restr2 with (R:=complement eqk)(eqA:=eqke)
+ ; auto with *.
+ - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *. now apply Hf.
+ - unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto with map.
+ - intros (k,e) (k',e') z z' h h'; unfold eq_key, uncurry;simpl; auto.
+ rewrite h'. eapply Hf'; now eauto.
+ - rewrite <- NoDupA_altdef; auto.
+ - intros (k,e).
+ rewrite 2 InA_rev, <- 2 bindings_mapsto_iff, 2 find_mapsto_iff, Hm;
+ auto with *.
+ Qed.
+
+ Lemma fold_Equal (f:key->elt->A->A) :
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Diamond f ->
+ forall m1 m2 i,
+ Equal m1 m2 ->
+ eqA (fold f m1 i) (fold f m2 i).
+ Proof.
+ intros. now apply fold_Proper.
+ Qed.
+
+ Lemma fold_Add (f:key->elt->A->A) :
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Diamond f ->
+ forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 ->
+ eqA (fold f m2 i) (f k e (fold f m1 i)).
+ Proof.
+ intros Hf Hf' m1 m2 k e i Hm1 Hm2.
+ rewrite 2 fold_spec_right.
+ set (f':=uncurry f).
+ change (f k e (fold_right f' i (rev (bindings m1))))
+ with (f' (k,e) (fold_right f' i (rev (bindings m1)))).
+ assert (NoDupA eqk (rev (bindings m1))) by (auto with * ).
+ assert (NoDupA eqk (rev (bindings m2))) by (auto with * ).
+ apply fold_right_add_restr with
+ (R:=complement eqk)(eqA:=eqke); auto with *.
+ - intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. now apply Hf.
+ - unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto with map.
+ - intros (k1,e1) (k2,e2) z1 z2; unfold eq_key, f', uncurry; simpl.
+ eapply Hf'; now eauto.
+ - rewrite <- NoDupA_altdef; auto.
+ - rewrite InA_rev, <- bindings_mapsto_iff by (auto with * ). firstorder.
+ - intros (a,b).
+ rewrite InA_cons, 2 InA_rev, <- 2 bindings_mapsto_iff,
+ 2 find_mapsto_iff by (auto with * ).
+ unfold eq_key_elt; simpl.
+ rewrite Hm2, !find_spec, add_mapsto_new; intuition.
+ Qed.
+
+ Lemma fold_add (f:key->elt->A->A) :
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Diamond f ->
+ forall m k e i, ~In k m ->
+ eqA (fold f (add k e m) i) (f k e (fold f m i)).
+ Proof.
+ intros. now apply fold_Add.
+ Qed.
+
+ End Fold_More.
+
+ (** * Cardinal *)
+
+ Lemma cardinal_fold (m : t elt) :
+ cardinal m = fold (fun _ _ => S) m 0.
+ Proof.
+ rewrite cardinal_1, fold_1.
+ symmetry; apply fold_left_length; auto.
+ Qed.
+
+ Lemma cardinal_Empty : forall m : t elt,
+ Empty m <-> cardinal m = 0.
+ Proof.
+ intros.
+ rewrite cardinal_1, bindings_Empty.
+ destruct (bindings m); intuition; discriminate.
+ Qed.
+
+ Lemma Equal_cardinal (m m' : t elt) :
+ Equal m m' -> cardinal m = cardinal m'.
+ Proof.
+ intro. rewrite 2 cardinal_fold.
+ apply fold_Equal with (eqA:=eq); try congruence; auto with map.
+ Qed.
+
+ Lemma cardinal_0 (m : t elt) : Empty m -> cardinal m = 0.
+ Proof.
+ intros; rewrite <- cardinal_Empty; auto.
+ Qed.
+
+ Lemma cardinal_S m m' x e :
+ ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m).
+ Proof.
+ intros. rewrite 2 cardinal_fold.
+ change S with ((fun _ _ => S) x e).
+ apply fold_Add with (eqA:=eq); try congruence; auto with map.
+ Qed.
+
+ Lemma cardinal_inv_1 : forall m : t elt,
+ cardinal m = 0 -> Empty m.
+ Proof.
+ intros; rewrite cardinal_Empty; auto.
+ Qed.
+ Hint Resolve cardinal_inv_1 : map.
+
+ Lemma cardinal_inv_2 :
+ forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
+ Proof.
+ intros; rewrite M.cardinal_spec in *.
+ generalize (bindings_mapsto_iff m).
+ destruct (bindings m); try discriminate.
+ exists p; auto.
+ rewrite H0; destruct p; simpl; auto.
+ constructor; red; auto with map.
+ Qed.
+
+ Lemma cardinal_inv_2b :
+ forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }.
+ Proof.
+ intros.
+ generalize (@cardinal_inv_2 m); destruct cardinal.
+ elim H;auto.
+ eauto.
+ Qed.
+
+ Lemma not_empty_mapsto (m : t elt) :
+ ~Empty m -> exists k e, MapsTo k e m.
+ Proof.
+ intro.
+ destruct (@cardinal_inv_2b m) as ((k,e),H').
+ contradict H. now apply cardinal_inv_1.
+ exists k; now exists e.
+ Qed.
+
+ Lemma not_empty_in (m:t elt) :
+ ~Empty m -> exists k, In k m.
+ Proof.
+ intro. destruct (not_empty_mapsto H) as (k,Hk).
+ now exists k.
+ Qed.
+
+ (** * Additional notions over maps *)
+
+ Definition Disjoint (m m' : t elt) :=
+ forall k, ~(In k m /\ In k m').
+
+ Definition Partition (m m1 m2 : t elt) :=
+ Disjoint m1 m2 /\
+ (forall k e, MapsTo k e m <-> MapsTo k e m1 \/ MapsTo k e m2).
+
+ (** * Emulation of some functions lacking in the interface *)
+
+ Definition filter (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e m => if f k e then add k e m else m) m empty.
+
+ Definition for_all (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e b => if f k e then b else false) m true.
+
+ Definition exists_ (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e b => if f k e then true else b) m false.
+
+ Definition partition (f : key -> elt -> bool)(m : t elt) :=
+ (filter f m, filter (fun k e => negb (f k e)) m).
+
+ (** [update] adds to [m1] all the bindings of [m2]. It can be seen as
+ an [union] operator which gives priority to its 2nd argument
+ in case of binding conflit. *)
+
+ Definition update (m1 m2 : t elt) := fold (@add _) m2 m1.
+
+ (** [restrict] keeps from [m1] only the bindings whose key is in [m2].
+ It can be seen as an [inter] operator, with priority to its 1st argument
+ in case of binding conflit. *)
+
+ Definition restrict (m1 m2 : t elt) := filter (fun k _ => mem k m2) m1.
+
+ (** [diff] erases from [m1] all bindings whose key is in [m2]. *)
+
+ Definition diff (m1 m2 : t elt) := filter (fun k _ => negb (mem k m2)) m1.
+
+ (** Properties of these abbreviations *)
+
+ Lemma filter_iff (f : key -> elt -> bool) :
+ Proper (E.eq==>eq==>eq) f ->
+ forall m k e,
+ MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true.
+ Proof.
+ unfold filter.
+ set (f':=fun k e m => if f k e then add k e m else m).
+ intros Hf m. pattern m, (fold f' m empty). apply fold_rec.
+
+ - intros m' Hm' k e. rewrite empty_mapsto_iff. intuition.
+ elim (Hm' k e); auto.
+
+ - intros k e acc m1 m2 Hke Hn Hadd IH k' e'.
+ change (Equal m2 (add k e m1)) in Hadd; rewrite Hadd.
+ unfold f'; simpl.
+ rewrite add_mapsto_new by trivial.
+ case_eq (f k e); intros Hfke; simpl;
+ rewrite ?add_mapsto_iff, IH; clear IH; intuition.
+ + rewrite <- Hfke; apply Hf; auto with map.
+ + right. repeat split; trivial. contradict Hn. rewrite Hn. now exists e'.
+ + assert (f k e = f k' e') by (apply Hf; auto). congruence.
+ Qed.
+
+ Lemma for_all_filter f m :
+ for_all f m = is_empty (filter (fun k e => negb (f k e)) m).
+ Proof.
+ unfold for_all, filter.
+ eapply fold_rel with (R:=fun x y => x = is_empty y).
+ - symmetry. apply is_empty_iff. apply empty_1.
+ - intros; subst. destruct (f k e); simpl; trivial.
+ symmetry. apply not_true_is_false. rewrite is_empty_spec.
+ intros H'. specialize (H' k). now rewrite add_spec1 in H'.
+ Qed.
+
+ Lemma exists_filter f m :
+ exists_ f m = negb (is_empty (filter f m)).
+ Proof.
+ unfold for_all, filter.
+ eapply fold_rel with (R:=fun x y => x = negb (is_empty y)).
+ - symmetry. rewrite negb_false_iff. apply is_empty_iff. apply empty_1.
+ - intros; subst. destruct (f k e); simpl; trivial.
+ symmetry. rewrite negb_true_iff. apply not_true_is_false.
+ rewrite is_empty_spec.
+ intros H'. specialize (H' k). now rewrite add_spec1 in H'.
+ Qed.
+
+ Lemma for_all_iff f m :
+ Proper (E.eq==>eq==>eq) f ->
+ (for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true)).
+ Proof.
+ intros Hf.
+ rewrite for_all_filter.
+ rewrite <- is_empty_iff. unfold Empty.
+ split; intros H k e; specialize (H k e);
+ rewrite filter_iff in * by solve_proper; intuition.
+ - destruct (f k e); auto.
+ - now rewrite H0 in H2.
+ Qed.
+
+ Lemma exists_iff f m :
+ Proper (E.eq==>eq==>eq) f ->
+ (exists_ f m = true <->
+ (exists k e, MapsTo k e m /\ f k e = true)).
+ Proof.
+ intros Hf.
+ rewrite exists_filter. rewrite negb_true_iff.
+ rewrite <- not_true_iff_false, <- is_empty_iff.
+ split.
+ - intros H. apply not_empty_mapsto in H. now setoid_rewrite filter_iff in H.
+ - unfold Empty. setoid_rewrite filter_iff; trivial. firstorder.
+ Qed.
+
+ Lemma Disjoint_alt : forall m m',
+ Disjoint m m' <->
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> False).
+ Proof.
+ unfold Disjoint; split.
+ intros H k v v' H1 H2.
+ apply H with k; split.
+ exists v; trivial.
+ exists v'; trivial.
+ intros H k ((v,Hv),(v',Hv')).
+ eapply H; eauto.
+ Qed.
+
+ Section Partition.
+ Variable f : key -> elt -> bool.
+ Hypothesis Hf : Proper (E.eq==>eq==>eq) f.
+
+ Lemma partition_iff_1 : forall m m1 k e,
+ m1 = fst (partition f m) ->
+ (MapsTo k e m1 <-> MapsTo k e m /\ f k e = true).
+ Proof.
+ unfold partition; simpl; intros. subst m1.
+ apply filter_iff; auto.
+ Qed.
+
+ Lemma partition_iff_2 : forall m m2 k e,
+ m2 = snd (partition f m) ->
+ (MapsTo k e m2 <-> MapsTo k e m /\ f k e = false).
+ Proof.
+ unfold partition; simpl; intros. subst m2.
+ rewrite filter_iff.
+ split; intros (H,H'); split; auto.
+ destruct (f k e); simpl in *; auto.
+ rewrite H'; auto.
+ repeat red; intros. f_equal. apply Hf; auto.
+ Qed.
+
+ Lemma partition_Partition : forall m m1 m2,
+ partition f m = (m1,m2) -> Partition m m1 m2.
+ Proof.
+ intros. split.
+ rewrite Disjoint_alt. intros k e e'.
+ rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
+ by (rewrite H; auto).
+ intros (U,V) (W,Z). rewrite <- (mapsto_fun U W) in Z; congruence.
+ intros k e.
+ rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2)
+ by (rewrite H; auto).
+ destruct (f k e); intuition.
+ Qed.
+
+ End Partition.
+
+ Lemma Partition_In : forall m m1 m2 k,
+ Partition m m1 m2 -> In k m -> {In k m1}+{In k m2}.
+ Proof.
+ intros m m1 m2 k Hm Hk.
+ destruct (In_dec m1 k) as [H|H]; [left|right]; auto.
+ destruct Hm as (Hm,Hm').
+ destruct Hk as (e,He); rewrite Hm' in He; destruct He.
+ elim H; exists e; auto.
+ exists e; auto.
+ Defined.
+
+ Lemma Disjoint_sym : forall m1 m2, Disjoint m1 m2 -> Disjoint m2 m1.
+ Proof.
+ intros m1 m2 H k (H1,H2). elim (H k); auto.
+ Qed.
+
+ Lemma Partition_sym : forall m m1 m2,
+ Partition m m1 m2 -> Partition m m2 m1.
+ Proof.
+ intros m m1 m2 (H,H'); split.
+ apply Disjoint_sym; auto.
+ intros; rewrite H'; intuition.
+ Qed.
+
+ Lemma Partition_Empty : forall m m1 m2, Partition m m1 m2 ->
+ (Empty m <-> (Empty m1 /\ Empty m2)).
+ Proof.
+ intros m m1 m2 (Hdisj,Heq). split.
+ intro He.
+ split; intros k e Hke; elim (He k e); rewrite Heq; auto.
+ intros (He1,He2) k e Hke. rewrite Heq in Hke. destruct Hke.
+ elim (He1 k e); auto.
+ elim (He2 k e); auto.
+ Qed.
+
+ Lemma Partition_Add :
+ forall m m' x e , ~In x m -> Add x e m m' ->
+ forall m1 m2, Partition m' m1 m2 ->
+ exists m3, (Add x e m3 m1 /\ Partition m m3 m2 \/
+ Add x e m3 m2 /\ Partition m m1 m3).
+ Proof.
+ unfold Partition. intros m m' x e Hn Hadd m1 m2 (Hdisj,Hor).
+ assert (Heq : Equal m (remove x m')).
+ { change (Equal m' (add x e m)) in Hadd. rewrite Hadd.
+ intro k. rewrite remove_o, add_o.
+ destruct E.eq_dec as [He|Hne]; auto.
+ rewrite <- He, <- not_find_in_iff; auto. }
+ assert (H : MapsTo x e m').
+ { change (Equal m' (add x e m)) in Hadd; rewrite Hadd.
+ apply add_1; auto with map. }
+ rewrite Hor in H; destruct H.
+
+ - (* first case : x in m1 *)
+ exists (remove x m1); left. split; [|split].
+ + (* add *)
+ change (Equal m1 (add x e (remove x m1))).
+ intro k.
+ rewrite add_o, remove_o.
+ destruct E.eq_dec as [He|Hne]; auto.
+ rewrite <- He; apply find_1; auto.
+ + (* disjoint *)
+ intros k (H1,H2). elim (Hdisj k). split; auto.
+ rewrite remove_in_iff in H1; destruct H1; auto.
+ + (* mapsto *)
+ intros k' e'.
+ rewrite Heq, 2 remove_mapsto_iff, Hor.
+ intuition.
+ elim (Hdisj x); split; [exists e|exists e']; auto.
+ apply MapsTo_1 with k'; auto with map.
+
+ - (* second case : x in m2 *)
+ exists (remove x m2); right. split; [|split].
+ + (* add *)
+ change (Equal m2 (add x e (remove x m2))).
+ intro k.
+ rewrite add_o, remove_o.
+ destruct E.eq_dec as [He|Hne]; auto.
+ rewrite <- He; apply find_1; auto.
+ + (* disjoint *)
+ intros k (H1,H2). elim (Hdisj k). split; auto.
+ rewrite remove_in_iff in H2; destruct H2; auto.
+ + (* mapsto *)
+ intros k' e'.
+ rewrite Heq, 2 remove_mapsto_iff, Hor.
+ intuition.
+ elim (Hdisj x); split; [exists e'|exists e]; auto.
+ apply MapsTo_1 with k'; auto with map.
+ Qed.
+
+ Lemma Partition_fold :
+ forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A),
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Diamond eqA f ->
+ forall m m1 m2 i,
+ Partition m m1 m2 ->
+ eqA (fold f m i) (fold f m1 (fold f m2 i)).
+ Proof.
+ intros A eqA st f Comp Tra.
+ induction m as [m Hm|m m' IH k e Hn Hadd] using map_induction.
+
+ - intros m1 m2 i Hp. rewrite (fold_Empty (eqA:=eqA)); auto.
+ rewrite (Partition_Empty Hp) in Hm. destruct Hm.
+ rewrite 2 (fold_Empty (eqA:=eqA)); auto. reflexivity.
+
+ - intros m1 m2 i Hp.
+ destruct (Partition_Add Hn Hadd Hp) as (m3,[(Hadd',Hp')|(Hadd',Hp')]).
+ + (* fst case: m3 is (k,e)::m1 *)
+ assert (~In k m3).
+ { contradict Hn. destruct Hn as (e',He').
+ destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. }
+ transitivity (f k e (fold f m i)).
+ apply fold_Add with (eqA:=eqA); auto.
+ symmetry.
+ transitivity (f k e (fold f m3 (fold f m2 i))).
+ apply fold_Add with (eqA:=eqA); auto.
+ apply Comp; auto with map.
+ symmetry; apply IH; auto.
+ + (* snd case: m3 is (k,e)::m2 *)
+ assert (~In k m3).
+ { contradict Hn. destruct Hn as (e',He').
+ destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. }
+ assert (~In k m1).
+ { contradict Hn. destruct Hn as (e',He').
+ destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. }
+ transitivity (f k e (fold f m i)).
+ apply fold_Add with (eqA:=eqA); auto.
+ transitivity (f k e (fold f m1 (fold f m3 i))).
+ apply Comp; auto using IH with map.
+ transitivity (fold f m1 (f k e (fold f m3 i))).
+ symmetry.
+ apply fold_commutes with (eqA:=eqA); auto.
+ apply fold_init with (eqA:=eqA); auto.
+ symmetry.
+ apply fold_Add with (eqA:=eqA); auto.
+ Qed.
+
+ Lemma Partition_cardinal : forall m m1 m2, Partition m m1 m2 ->
+ cardinal m = cardinal m1 + cardinal m2.
+ Proof.
+ intros.
+ rewrite (cardinal_fold m), (cardinal_fold m1).
+ set (f:=fun (_:key)(_:elt)=>S).
+ setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)).
+ rewrite <- cardinal_fold.
+ apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto.
+ apply Partition_fold with (eqA:=eq); compute; auto with map. congruence.
+ Qed.
+
+ Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 ->
+ let f := fun k (_:elt) => mem k m1 in
+ Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)).
+ Proof.
+ intros m m1 m2 Hm f.
+ assert (Hf : Proper (E.eq==>eq==>eq) f).
+ intros k k' Hk e e' _; unfold f; rewrite Hk; auto.
+ set (m1':= fst (partition f m)).
+ set (m2':= snd (partition f m)).
+ split; rewrite Equal_mapsto_iff; intros k e.
+ rewrite (@partition_iff_1 f Hf m m1') by auto.
+ unfold f.
+ rewrite <- mem_in_iff.
+ destruct Hm as (Hm,Hm').
+ rewrite Hm'.
+ intuition.
+ exists e; auto.
+ elim (Hm k); split; auto; exists e; auto.
+ rewrite (@partition_iff_2 f Hf m m2') by auto.
+ unfold f.
+ rewrite <- not_mem_in_iff.
+ destruct Hm as (Hm,Hm').
+ rewrite Hm'.
+ intuition.
+ elim (Hm k); split; auto; exists e; auto.
+ elim H1; exists e; auto.
+ Qed.
+
+ Lemma update_mapsto_iff : forall m m' k e,
+ MapsTo k e (update m m') <->
+ (MapsTo k e m' \/ (MapsTo k e m /\ ~In k m')).
+ Proof.
+ unfold update.
+ intros m m'.
+ pattern m', (fold (@add _) m' m). apply fold_rec.
+
+ - intros m0 Hm0 k e.
+ assert (~In k m0) by (intros (e0,He0); apply (Hm0 k e0); auto).
+ intuition.
+ elim (Hm0 k e); auto.
+
+ - intros k e m0 m1 m2 _ Hn Hadd IH k' e'.
+ change (Equal m2 (add k e m1)) in Hadd.
+ rewrite Hadd, 2 add_mapsto_iff, IH, add_in_iff. clear IH. intuition.
+ Qed.
+
+ Lemma update_dec : forall m m' k e, MapsTo k e (update m m') ->
+ { MapsTo k e m' } + { MapsTo k e m /\ ~In k m'}.
+ Proof.
+ intros m m' k e H. rewrite update_mapsto_iff in H.
+ destruct (In_dec m' k) as [H'|H']; [left|right]; intuition.
+ elim H'; exists e; auto.
+ Defined.
+
+ Lemma update_in_iff : forall m m' k,
+ In k (update m m') <-> In k m \/ In k m'.
+ Proof.
+ intros m m' k. split.
+ intros (e,H); rewrite update_mapsto_iff in H.
+ destruct H; [right|left]; exists e; intuition.
+ destruct (In_dec m' k) as [H|H].
+ destruct H as (e,H). intros _; exists e.
+ rewrite update_mapsto_iff; left; auto.
+ destruct 1 as [H'|H']; [|elim H; auto].
+ destruct H' as (e,H'). exists e.
+ rewrite update_mapsto_iff; right; auto.
+ Qed.
+
+ Lemma diff_mapsto_iff : forall m m' k e,
+ MapsTo k e (diff m m') <-> MapsTo k e m /\ ~In k m'.
+ Proof.
+ intros m m' k e.
+ unfold diff.
+ rewrite filter_iff.
+ intuition.
+ rewrite mem_1 in *; auto; discriminate.
+ intros ? ? Hk _ _ _; rewrite Hk; auto.
+ Qed.
+
+ Lemma diff_in_iff : forall m m' k,
+ In k (diff m m') <-> In k m /\ ~In k m'.
+ Proof.
+ intros m m' k. split.
+ intros (e,H); rewrite diff_mapsto_iff in H.
+ destruct H; split; auto. exists e; auto.
+ intros ((e,H),H'); exists e; rewrite diff_mapsto_iff; auto.
+ Qed.
+
+ Lemma restrict_mapsto_iff : forall m m' k e,
+ MapsTo k e (restrict m m') <-> MapsTo k e m /\ In k m'.
+ Proof.
+ intros m m' k e.
+ unfold restrict.
+ rewrite filter_iff.
+ intuition.
+ intros ? ? Hk _ _ _; rewrite Hk; auto.
+ Qed.
+
+ Lemma restrict_in_iff : forall m m' k,
+ In k (restrict m m') <-> In k m /\ In k m'.
+ Proof.
+ intros m m' k. split.
+ intros (e,H); rewrite restrict_mapsto_iff in H.
+ destruct H; split; auto. exists e; auto.
+ intros ((e,H),H'); exists e; rewrite restrict_mapsto_iff; auto.
+ Qed.
+
+ (** specialized versions analyzing only keys (resp. bindings) *)
+
+ Definition filter_dom (f : key -> bool) := filter (fun k _ => f k).
+ Definition filter_range (f : elt -> bool) := filter (fun _ => f).
+ Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k).
+ Definition for_all_range (f : elt -> bool) := for_all (fun _ => f).
+ Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k).
+ Definition exists_range (f : elt -> bool) := exists_ (fun _ => f).
+ Definition partition_dom (f : key -> bool) := partition (fun k _ => f k).
+ Definition partition_range (f : elt -> bool) := partition (fun _ => f).
+
+ End Elt.
+
+ Instance cardinal_m {elt} : Proper (Equal ==> Logic.eq) (@cardinal elt).
+ Proof. intros m m'. apply Equal_cardinal. Qed.
+
+ Instance Disjoint_m {elt} : Proper (Equal ==> Equal ==> iff) (@Disjoint elt).
+ Proof.
+ intros m1 m1' Hm1 m2 m2' Hm2. unfold Disjoint. split; intros.
+ rewrite <- Hm1, <- Hm2; auto.
+ rewrite Hm1, Hm2; auto.
+ Qed.
+
+ Instance Partition_m {elt} :
+ Proper (Equal ==> Equal ==> Equal ==> iff) (@Partition elt).
+ Proof.
+ intros m1 m1' Hm1 m2 m2' Hm2 m3 m3' Hm3. unfold Partition.
+ rewrite <- Hm2, <- Hm3.
+ split; intros (H,H'); split; auto; intros.
+ rewrite <- Hm1, <- Hm2, <- Hm3; auto.
+ rewrite Hm1, Hm2, Hm3; auto.
+ Qed.
+
+(*
+ Instance filter_m0 {elt} (f:key->elt->bool) :
+ Proper (E.eq==>Logic.eq==>Logic.eq) f ->
+ Proper (Equal==>Equal) (filter f).
+ Proof.
+ intros Hf m m' Hm. apply Equal_mapsto_iff. intros.
+ now rewrite !filter_iff, Hm.
+ Qed.
+*)
+
+ Instance filter_m {elt} :
+ Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@filter elt).
+ Proof.
+ intros f f' Hf m m' Hm. unfold filter.
+ rewrite 2 fold_spec_right.
+ set (l := rev (bindings m)).
+ set (l' := rev (bindings m')).
+ set (op := fun (f:key->elt->bool) =>
+ uncurry (fun k e acc => if f k e then add k e acc else acc)).
+ change (Equal (fold_right (op f) empty l) (fold_right (op f') empty l')).
+ assert (Hl : NoDupA eq_key l).
+ { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. }
+ assert (Hl' : NoDupA eq_key l').
+ { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. }
+ assert (H : PermutationA eq_key_elt l l').
+ { apply NoDupA_equivlistA_PermutationA.
+ - apply eqke_equiv.
+ - now apply NoDupA_eqk_eqke.
+ - now apply NoDupA_eqk_eqke.
+ - intros (k,e); unfold l, l'. rewrite 2 InA_rev, 2 bindings_spec1.
+ rewrite Equal_mapsto_iff in Hm. apply Hm. }
+ destruct (PermutationA_decompose (eqke_equiv _) H) as (l0,(P,E)).
+ transitivity (fold_right (op f) empty l0).
+ - apply fold_right_equivlistA_restr2
+ with (eqA:=Logic.eq)(R:=complement eq_key); auto with *.
+ + intros p p' <- acc acc' Hacc.
+ destruct p as (k,e); unfold op, uncurry; simpl.
+ destruct (f k e); now rewrite Hacc.
+ + intros (k,e) (k',e') z z'.
+ unfold op, complement, uncurry, eq_key; simpl.
+ intros Hk Hz.
+ destruct (f k e), (f k' e'); rewrite <- Hz; try reflexivity.
+ now apply add_add_2.
+ + apply NoDupA_incl with eq_key; trivial. intros; subst; now red.
+ + apply PermutationA_preserves_NoDupA with l; auto with *.
+ apply Permutation_PermutationA; auto with *.
+ apply NoDupA_incl with eq_key; trivial. intros; subst; now red.
+ + apply NoDupA_altdef. apply NoDupA_rev. apply eqk_equiv.
+ apply bindings_spec2w.
+ + apply PermutationA_equivlistA; auto with *.
+ apply Permutation_PermutationA; auto with *.
+ - clearbody l'. clear l Hl Hl' H P m m' Hm.
+ induction E.
+ + reflexivity.
+ + simpl. destruct x as (k,e), x' as (k',e').
+ unfold op, uncurry at 1 3; simpl.
+ destruct H; simpl in *. rewrite <- (Hf _ _ H _ _ H0).
+ destruct (f k e); trivial. now f_equiv.
+ Qed.
+
+ Instance for_all_m {elt} :
+ Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@for_all elt).
+ Proof.
+ intros f f' Hf m m' Hm. rewrite 2 for_all_filter.
+ (* Strange: we cannot rewrite Hm here... *)
+ f_equiv. f_equiv; trivial.
+ intros k k' Hk e e' He. f_equal. now apply Hf.
+ Qed.
+
+ Instance exists_m {elt} :
+ Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@exists_ elt).
+ Proof.
+ intros f f' Hf m m' Hm. rewrite 2 exists_filter.
+ f_equal. now apply is_empty_m, filter_m.
+ Qed.
+
+ Fact diamond_add {elt} : Diamond Equal (@add elt).
+ Proof.
+ intros k k' e e' a b b' Hk <- <-. now apply add_add_2.
+ Qed.
+
+ Instance update_m {elt} : Proper (Equal ==> Equal ==> Equal) (@update elt).
+ Proof.
+ intros m1 m1' Hm1 m2 m2' Hm2.
+ unfold update.
+ apply fold_Proper; auto using diamond_add with *.
+ Qed.
+
+ Instance restrict_m {elt} : Proper (Equal==>Equal==>Equal) (@restrict elt).
+ Proof.
+ intros m1 m1' Hm1 m2 m2' Hm2 y.
+ unfold restrict.
+ apply eq_option_alt. intros e.
+ rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity.
+ clear. intros x x' Hx e e' He. now rewrite Hx.
+ clear. intros x x' Hx e e' He. now rewrite Hx.
+ Qed.
+
+ Instance diff_m {elt} : Proper (Equal==>Equal==>Equal) (@diff elt).
+ Proof.
+ intros m1 m1' Hm1 m2 m2' Hm2 y.
+ unfold diff.
+ apply eq_option_alt. intros e.
+ rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity.
+ clear. intros x x' Hx e e' He. now rewrite Hx.
+ clear. intros x x' Hx e e' He. now rewrite Hx.
+ Qed.
+
+End WProperties_fun.
+
+(** * Same Properties for self-contained weak maps and for full maps *)
+
+Module WProperties (M:WS) := WProperties_fun M.E M.
+Module Properties := WProperties.
+
+(** * Properties specific to maps with ordered keys *)
+
+Module OrdProperties (M:S).
+ Module Import ME := OrderedTypeFacts M.E.
+ Module Import O:=KeyOrderedType M.E.
+ Module Import P:=Properties M.
+ Import M.
+
+ Section Elt.
+ Variable elt:Type.
+
+ Definition Above x (m:t elt) := forall y, In y m -> E.lt y x.
+ Definition Below x (m:t elt) := forall y, In y m -> E.lt x y.
+
+ Section Bindings.
+
+ Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
+ sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
+ Proof.
+ apply SortA_equivlistA_eqlistA; eauto with *.
+ Qed.
+
+ Ltac klean := unfold O.eqke, O.ltk, RelCompFun in *; simpl in *.
+ Ltac keauto := klean; intuition; eauto.
+
+ Definition gtb (p p':key*elt) :=
+ match E.compare (fst p) (fst p') with Gt => true | _ => false end.
+ Definition leb p := fun p' => negb (gtb p p').
+
+ Definition bindings_lt p m := List.filter (gtb p) (bindings m).
+ Definition bindings_ge p m := List.filter (leb p) (bindings m).
+
+ Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p.
+ Proof.
+ intros (x,e) (y,e'); unfold gtb; klean.
+ case E.compare_spec; intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p.
+ Proof.
+ intros (x,e) (y,e'); unfold leb, gtb; klean.
+ case E.compare_spec; intuition; try discriminate; ME.order.
+ Qed.
+
+ Instance gtb_compat : forall p, Proper (eqke==>eq) (gtb p).
+ Proof.
+ red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
+ generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
+ destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); klean; auto.
+ - intros. symmetry; rewrite H2. rewrite <-H, <-H1; auto.
+ - intros. rewrite H1. rewrite H, <- H2; auto.
+ Qed.
+
+ Instance leb_compat : forall p, Proper (eqke==>eq) (leb p).
+ Proof.
+ intros x a b H. unfold leb; f_equal; apply gtb_compat; auto.
+ Qed.
+
+ Hint Resolve gtb_compat leb_compat bindings_spec2 : map.
+
+ Lemma bindings_split : forall p m,
+ bindings m = bindings_lt p m ++ bindings_ge p m.
+ Proof.
+ unfold bindings_lt, bindings_ge, leb; intros.
+ apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with *.
+ intros; destruct x; destruct y; destruct p.
+ rewrite gtb_1 in H; klean.
+ apply not_true_iff_false in H0. rewrite gtb_1 in H0. klean. ME.order.
+ Qed.
+
+ Lemma bindings_Add : forall m m' x e, ~In x m -> Add x e m m' ->
+ eqlistA eqke (bindings m')
+ (bindings_lt (x,e) m ++ (x,e):: bindings_ge (x,e) m).
+ Proof.
+ intros; unfold bindings_lt, bindings_ge.
+ apply sort_equivlistA_eqlistA; auto with *.
+ - apply (@SortA_app _ eqke); auto with *.
+ + apply (@filter_sort _ eqke); auto with *; keauto.
+ + constructor; auto with map.
+ * apply (@filter_sort _ eqke); auto with *; keauto.
+ * rewrite (@InfA_alt _ eqke); auto with *; try (keauto; fail).
+ { intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite leb_1 in H2.
+ destruct y; klean.
+ rewrite <- bindings_mapsto_iff in H1.
+ assert (~E.eq x t0).
+ { contradict H.
+ exists e0; apply MapsTo_1 with t0; auto.
+ ME.order. }
+ ME.order. }
+ { apply (@filter_sort _ eqke); auto with *; keauto. }
+ + intros.
+ rewrite filter_InA in H1; auto with *; destruct H1.
+ rewrite gtb_1 in H3.
+ destruct y; destruct x0; klean.
+ inversion_clear H2.
+ * red in H4; klean; destruct H4; simpl in *. ME.order.
+ * rewrite filter_InA in H4; auto with *; destruct H4.
+ rewrite leb_1 in H4. klean; ME.order.
+ - intros (k,e').
+ rewrite InA_app_iff, InA_cons, 2 filter_InA,
+ <-2 bindings_mapsto_iff, leb_1, gtb_1,
+ find_mapsto_iff, (H0 k), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with * ).
+ change (eqke (k,e') (x,e)) with (E.eq k x /\ e' = e).
+ klean.
+ split.
+ + intros [(->,->)|(Hk,Hm)].
+ * right; now left.
+ * destruct (lt_dec k x); intuition.
+ + intros [(Hm,LT)|[(->,->)|(Hm,EQ)]].
+ * right; split; trivial; ME.order.
+ * now left.
+ * destruct (eq_dec x k) as [Hk|Hk].
+ elim H. exists e'. now rewrite Hk.
+ right; auto.
+ Qed.
+
+ Lemma bindings_Add_Above : forall m m' x e,
+ Above x m -> Add x e m m' ->
+ eqlistA eqke (bindings m') (bindings m ++ (x,e)::nil).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with *.
+ apply (@SortA_app _ eqke); auto with *.
+ intros.
+ inversion_clear H2.
+ destruct x0; destruct y.
+ rewrite <- bindings_mapsto_iff in H1.
+ destruct H3; klean.
+ rewrite H2.
+ apply H; firstorder.
+ inversion H3.
+ red; intros a; destruct a.
+ rewrite InA_app_iff, InA_cons, InA_nil, <- 2 bindings_mapsto_iff,
+ find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with *).
+ change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e).
+ intuition.
+ destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
+ exfalso.
+ assert (In t0 m) by (exists e0; auto).
+ generalize (H t0 H1).
+ ME.order.
+ Qed.
+
+ Lemma bindings_Add_Below : forall m m' x e,
+ Below x m -> Add x e m m' ->
+ eqlistA eqke (bindings m') ((x,e)::bindings m).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with *.
+ change (sort ltk (((x,e)::nil) ++ bindings m)).
+ apply (@SortA_app _ eqke); auto with *.
+ intros.
+ inversion_clear H1.
+ destruct y; destruct x0.
+ rewrite <- bindings_mapsto_iff in H2.
+ destruct H3; klean.
+ rewrite H1.
+ apply H; firstorder.
+ inversion H3.
+ red; intros a; destruct a.
+ rewrite InA_cons, <- 2 bindings_mapsto_iff,
+ find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
+ add_mapsto_iff by (auto with * ).
+ change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e).
+ intuition.
+ destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
+ exfalso.
+ assert (In t0 m) by (exists e0; auto).
+ generalize (H t0 H1).
+ ME.order.
+ Qed.
+
+ Lemma bindings_Equal_eqlistA : forall (m m': t elt),
+ Equal m m' -> eqlistA eqke (bindings m) (bindings m').
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with *.
+ red; intros.
+ destruct x; do 2 rewrite <- bindings_mapsto_iff.
+ do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
+ Qed.
+
+ End Bindings.
+
+ Section Min_Max_Elt.
+
+ (** We emulate two [max_elt] and [min_elt] functions. *)
+
+ Fixpoint max_elt_aux (l:list (key*elt)) := match l with
+ | nil => None
+ | (x,e)::nil => Some (x,e)
+ | (x,e)::l => max_elt_aux l
+ end.
+ Definition max_elt m := max_elt_aux (bindings m).
+
+ Lemma max_elt_Above :
+ forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
+ Proof.
+ red; intros.
+ rewrite remove_in_iff in H0.
+ destruct H0.
+ rewrite bindings_in_iff in H1.
+ destruct H1.
+ unfold max_elt in *.
+ generalize (bindings_spec2 m).
+ revert x e H y x0 H0 H1.
+ induction (bindings m).
+ simpl; intros; try discriminate.
+ intros.
+ destruct a; destruct l; simpl in *.
+ injection H; clear H; intros; subst.
+ inversion_clear H1.
+ red in H; simpl in *; intuition.
+ now elim H0.
+ inversion H.
+ change (max_elt_aux (p::l) = Some (x,e)) in H.
+ generalize (IHl x e H); clear IHl; intros IHl.
+ inversion_clear H1; [ | inversion_clear H2; eauto ].
+ red in H3; simpl in H3; destruct H3.
+ destruct p as (p1,p2).
+ destruct (E.eq_dec p1 x) as [Heq|Hneq].
+ rewrite <- Heq; auto.
+ inversion_clear H2.
+ inversion_clear H5.
+ red in H2; simpl in H2; ME.order.
+ transitivity p1; auto.
+ inversion_clear H2.
+ inversion_clear H5.
+ red in H2; simpl in H2; ME.order.
+ eapply IHl; eauto with *.
+ econstructor; eauto.
+ red; eauto with *.
+ inversion H2; auto.
+ Qed.
+
+ Lemma max_elt_MapsTo :
+ forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
+ Proof.
+ intros.
+ unfold max_elt in *.
+ rewrite bindings_mapsto_iff.
+ induction (bindings m).
+ simpl; try discriminate.
+ destruct a; destruct l; simpl in *.
+ injection H; intros; subst; constructor; red; auto with *.
+ constructor 2; auto.
+ Qed.
+
+ Lemma max_elt_Empty :
+ forall m, max_elt m = None -> Empty m.
+ Proof.
+ intros.
+ unfold max_elt in *.
+ rewrite bindings_Empty.
+ induction (bindings m); auto.
+ destruct a; destruct l; simpl in *; try discriminate.
+ assert (H':=IHl H); discriminate.
+ Qed.
+
+ Definition min_elt m : option (key*elt) := match bindings m with
+ | nil => None
+ | (x,e)::_ => Some (x,e)
+ end.
+
+ Lemma min_elt_Below :
+ forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
+ Proof.
+ unfold min_elt, Below; intros.
+ rewrite remove_in_iff in H0; destruct H0.
+ rewrite bindings_in_iff in H1.
+ destruct H1.
+ generalize (bindings_spec2 m).
+ destruct (bindings m).
+ try discriminate.
+ destruct p; injection H; intros; subst.
+ inversion_clear H1.
+ red in H2; destruct H2; simpl in *; ME.order.
+ inversion_clear H4.
+ rewrite (@InfA_alt _ eqke) in H3; eauto with *.
+ apply (H3 (y,x0)); auto.
+ Qed.
+
+ Lemma min_elt_MapsTo :
+ forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
+ Proof.
+ intros.
+ unfold min_elt in *.
+ rewrite bindings_mapsto_iff.
+ destruct (bindings m).
+ simpl; try discriminate.
+ destruct p; simpl in *.
+ injection H; intros; subst; constructor; red; auto with *.
+ Qed.
+
+ Lemma min_elt_Empty :
+ forall m, min_elt m = None -> Empty m.
+ Proof.
+ intros.
+ unfold min_elt in *.
+ rewrite bindings_Empty.
+ destruct (bindings m); auto.
+ destruct p; simpl in *; discriminate.
+ Qed.
+
+ End Min_Max_Elt.
+
+ Section Induction_Principles.
+
+ Lemma map_induction_max :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
+ apply X; apply cardinal_inv_1; auto.
+
+ case_eq (max_elt m); intros.
+ destruct p.
+ assert (Add k e (remove k m) m).
+ { apply max_elt_MapsTo, find_spec, add_id in H.
+ unfold Add. symmetry. now rewrite add_remove_1. }
+ apply X0 with (remove k m) k e; auto with map.
+ apply IHn.
+ assert (S n = S (cardinal (remove k m))).
+ { rewrite Heqn.
+ eapply cardinal_S; eauto with map. }
+ inversion H1; auto.
+ eapply max_elt_Above; eauto.
+
+ apply X; apply max_elt_Empty; auto.
+ Qed.
+
+ Lemma map_induction_min :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
+ apply X; apply cardinal_inv_1; auto.
+
+ case_eq (min_elt m); intros.
+ destruct p.
+ assert (Add k e (remove k m) m).
+ { apply min_elt_MapsTo, find_spec, add_id in H.
+ unfold Add. symmetry. now rewrite add_remove_1. }
+ apply X0 with (remove k m) k e; auto.
+ apply IHn.
+ assert (S n = S (cardinal (remove k m))).
+ { rewrite Heqn.
+ eapply cardinal_S; eauto with map. }
+ inversion H1; auto.
+ eapply min_elt_Below; eauto.
+
+ apply X; apply min_elt_Empty; auto.
+ Qed.
+
+ End Induction_Principles.
+
+ Section Fold_properties.
+
+ (** The following lemma has already been proved on Weak Maps,
+ but with one additionnal hypothesis (some [transpose] fact). *)
+
+ Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
+ (f:key->elt->A->A)(i:A),
+ Proper (E.eq==>eq==>eqA==>eqA) f ->
+ Equal m1 m2 ->
+ eqA (fold f m1 i) (fold f m2 i).
+ Proof.
+ intros m1 m2 A eqA st f i Hf Heq.
+ rewrite 2 fold_spec_right.
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto.
+ apply eqlistA_rev. apply bindings_Equal_eqlistA. auto.
+ Qed.
+
+ Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
+ (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
+ Above x m1 -> Add x e m1 m2 ->
+ eqA (fold f m2 i) (f x e (fold f m1 i)).
+ Proof.
+ intros. rewrite 2 fold_spec_right. set (f':=uncurry f).
+ transitivity (fold_right f' i (rev (bindings m1 ++ (x,e)::nil))).
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto.
+ apply eqlistA_rev.
+ apply bindings_Add_Above; auto.
+ rewrite distr_rev; simpl.
+ reflexivity.
+ Qed.
+
+ Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)
+ (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f),
+ Below x m1 -> Add x e m1 m2 ->
+ eqA (fold f m2 i) (fold f m1 (f x e i)).
+ Proof.
+ intros. rewrite 2 fold_spec_right. set (f':=uncurry f).
+ transitivity (fold_right f' i (rev (((x,e)::nil)++bindings m1))).
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto.
+ apply eqlistA_rev.
+ simpl; apply bindings_Add_Below; auto.
+ rewrite distr_rev; simpl.
+ rewrite fold_right_app.
+ reflexivity.
+ Qed.
+
+ End Fold_properties.
+
+ End Elt.
+
+End OrdProperties.