summaryrefslogtreecommitdiff
path: root/theories/Logic/FunctionalExtensionality.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/FunctionalExtensionality.v')
-rw-r--r--theories/Logic/FunctionalExtensionality.v166
1 files changed, 160 insertions, 6 deletions
diff --git a/theories/Logic/FunctionalExtensionality.v b/theories/Logic/FunctionalExtensionality.v
index 04d9a670..95e1af2e 100644
--- a/theories/Logic/FunctionalExtensionality.v
+++ b/theories/Logic/FunctionalExtensionality.v
@@ -1,9 +1,11 @@
(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** This module states the axiom of (dependent) functional extensionality and (dependent) eta-expansion.
@@ -56,6 +58,78 @@ Proof.
apply functional_extensionality in H. destruct H. reflexivity.
Defined.
+(** A version of [functional_extensionality_dep] which is provably
+ equal to [eq_refl] on [fun _ => eq_refl] *)
+Definition functional_extensionality_dep_good
+ {A} {B : A -> Type}
+ (f g : forall x : A, B x)
+ (H : forall x, f x = g x)
+ : f = g
+ := eq_trans (eq_sym (functional_extensionality_dep f f (fun _ => eq_refl)))
+ (functional_extensionality_dep f g H).
+
+Lemma functional_extensionality_dep_good_refl {A B} f
+ : @functional_extensionality_dep_good A B f f (fun _ => eq_refl) = eq_refl.
+Proof.
+ unfold functional_extensionality_dep_good; edestruct functional_extensionality_dep; reflexivity.
+Defined.
+
+Opaque functional_extensionality_dep_good.
+
+Lemma forall_sig_eq_rect
+ {A B} (f : forall a : A, B a)
+ (P : { g : _ | (forall a, f a = g a) } -> Type)
+ (k : P (exist (fun g => forall a, f a = g a) f (fun a => eq_refl)))
+ g
+: P g.
+Proof.
+ destruct g as [g1 g2].
+ set (g' := fun x => (exist _ (g1 x) (g2 x))).
+ change g2 with (fun x => proj2_sig (g' x)).
+ change g1 with (fun x => proj1_sig (g' x)).
+ clearbody g'; clear g1 g2.
+ cut (forall x, (exist _ (f x) eq_refl) = g' x).
+ { intro H'.
+ apply functional_extensionality_dep_good in H'.
+ destruct H'.
+ exact k. }
+ { intro x.
+ destruct (g' x) as [g'x1 g'x2].
+ destruct g'x2.
+ reflexivity. }
+Defined.
+
+Definition forall_eq_rect
+ {A B} (f : forall a : A, B a)
+ (P : forall g, (forall a, f a = g a) -> Type)
+ (k : P f (fun a => eq_refl))
+ g H
+ : P g H
+ := @forall_sig_eq_rect A B f (fun g => P (proj1_sig g) (proj2_sig g)) k (exist _ g H).
+
+Definition forall_eq_rect_comp {A B} f P k
+ : @forall_eq_rect A B f P k f (fun _ => eq_refl) = k.
+Proof.
+ unfold forall_eq_rect, forall_sig_eq_rect; simpl.
+ rewrite functional_extensionality_dep_good_refl; reflexivity.
+Qed.
+
+Definition f_equal__functional_extensionality_dep_good
+ {A B f g} H a
+ : f_equal (fun h => h a) (@functional_extensionality_dep_good A B f g H) = H a.
+Proof.
+ apply forall_eq_rect with (H := H); clear H g.
+ change (eq_refl (f a)) with (f_equal (fun h => h a) (eq_refl f)).
+ apply f_equal, functional_extensionality_dep_good_refl.
+Defined.
+
+Definition f_equal__functional_extensionality_dep_good__fun
+ {A B f g} H
+ : (fun a => f_equal (fun h => h a) (@functional_extensionality_dep_good A B f g H)) = H.
+Proof.
+ apply functional_extensionality_dep_good; intro a; apply f_equal__functional_extensionality_dep_good.
+Defined.
+
(** Apply [functional_extensionality], introducing variable x. *)
Tactic Notation "extensionality" ident(x) :=
@@ -68,13 +142,93 @@ Tactic Notation "extensionality" ident(x) :=
apply forall_extensionality) ; intro x
end.
-(** Eta expansion follows from extensionality. *)
+(** Iteratively apply [functional_extensionality] on an hypothesis
+ until finding an equality statement *)
+(* Note that you can write [Ltac extensionality_in_checker tac ::= tac tt.] to get a more informative error message. *)
+Ltac extensionality_in_checker tac :=
+ first [ tac tt | fail 1 "Anomaly: Unexpected error in extensionality tactic. Please report." ].
+Tactic Notation "extensionality" "in" hyp(H) :=
+ let rec check_is_extensional_equality H :=
+ lazymatch type of H with
+ | _ = _ => constr:(Prop)
+ | forall a : ?A, ?T
+ => let Ha := fresh in
+ constr:(forall a : A, match H a with Ha => ltac:(let v := check_is_extensional_equality Ha in exact v) end)
+ end in
+ let assert_is_extensional_equality H :=
+ first [ let dummy := check_is_extensional_equality H in idtac
+ | fail 1 "Not an extensional equality" ] in
+ let assert_not_intensional_equality H :=
+ lazymatch type of H with
+ | _ = _ => fail "Already an intensional equality"
+ | _ => idtac
+ end in
+ let enforce_no_body H :=
+ (tryif (let dummy := (eval unfold H in H) in idtac)
+ then clearbody H
+ else idtac) in
+ let rec extensionality_step_make_type H :=
+ lazymatch type of H with
+ | forall a : ?A, ?f = ?g
+ => constr:({ H' | (fun a => f_equal (fun h => h a) H') = H })
+ | forall a : ?A, _
+ => let H' := fresh in
+ constr:(forall a : A, match H a with H' => ltac:(let ret := extensionality_step_make_type H' in exact ret) end)
+ end in
+ let rec eta_contract T :=
+ lazymatch (eval cbv beta in T) with
+ | context T'[fun a : ?A => ?f a]
+ => let T'' := context T'[f] in
+ eta_contract T''
+ | ?T => T
+ end in
+ let rec lift_sig_extensionality H :=
+ lazymatch type of H with
+ | sig _ => H
+ | forall a : ?A, _
+ => let Ha := fresh in
+ let ret := constr:(fun a : A => match H a with Ha => ltac:(let v := lift_sig_extensionality Ha in exact v) end) in
+ lazymatch type of ret with
+ | forall a : ?A, sig (fun b : ?B => @?f a b = @?g a b)
+ => eta_contract (exist (fun b : (forall a : A, B) => (fun a : A => f a (b a)) = (fun a : A => g a (b a)))
+ (fun a : A => proj1_sig (ret a))
+ (@functional_extensionality_dep_good _ _ _ _ (fun a : A => proj2_sig (ret a))))
+ end
+ end in
+ let extensionality_pre_step H H_out Heq :=
+ let T := extensionality_step_make_type H in
+ let H' := fresh in
+ assert (H' : T) by (intros; eexists; apply f_equal__functional_extensionality_dep_good__fun);
+ let H''b := lift_sig_extensionality H' in
+ case H''b; clear H';
+ intros H_out Heq in
+ let rec extensionality_rec H H_out Heq :=
+ lazymatch type of H with
+ | forall a, _ = _
+ => extensionality_pre_step H H_out Heq
+ | _
+ => let pre_H_out' := fresh H_out in
+ let H_out' := fresh pre_H_out' in
+ extensionality_pre_step H H_out' Heq;
+ let Heq' := fresh Heq in
+ extensionality_rec H_out' H_out Heq';
+ subst H_out'
+ end in
+ first [ assert_is_extensional_equality H | fail 1 "Not an extensional equality" ];
+ first [ assert_not_intensional_equality H | fail 1 "Already an intensional equality" ];
+ (tryif enforce_no_body H then idtac else clearbody H);
+ let H_out := fresh in
+ let Heq := fresh "Heq" in
+ extensionality_in_checker ltac:(fun tt => extensionality_rec H H_out Heq);
+ (* If we [subst H], things break if we already have another equation of the form [_ = H] *)
+ destruct Heq; rename H_out into H.
+
+(** Eta expansion is built into Coq. *)
Lemma eta_expansion_dep {A} {B : A -> Type} (f : forall x : A, B x) :
f = fun x => f x.
Proof.
intros.
- extensionality x.
reflexivity.
Qed.