summaryrefslogtreecommitdiff
path: root/theories/Logic/Eqdep_dec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/Eqdep_dec.v')
-rw-r--r--theories/Logic/Eqdep_dec.v32
1 files changed, 16 insertions, 16 deletions
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index 59088aa7..3a6f6a23 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,7 +9,7 @@
(* Created by Bruno Barras, Jan 1998 *)
(* Made a module instance for EqdepFacts by Hugo Herbelin, Mar 2006 *)
-(** We prove that there is only one proof of [x=x], i.e [refl_equal x].
+(** We prove that there is only one proof of [x=x], i.e [eq_refl x].
This holds if the equality upon the set of [x] is decidable.
A corollary of this theorem is the equality of the right projections
of two equal dependent pairs.
@@ -43,7 +43,7 @@ Section EqdepDec.
Let comp (x y y':A) (eq1:x = y) (eq2:x = y') : y = y' :=
eq_ind _ (fun a => a = y') eq2 _ eq1.
- Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = refl_equal y.
+ Remark trans_sym_eq : forall (x y:A) (u:x = y), comp u u = eq_refl y.
Proof.
intros.
case u; trivial.
@@ -61,7 +61,7 @@ Section EqdepDec.
Let nu_constant : forall (y:A) (u v:x = y), nu u = nu v.
intros.
- unfold nu in |- *.
+ unfold nu.
case (eq_dec x y); intros.
reflexivity.
@@ -69,13 +69,13 @@ Section EqdepDec.
Qed.
- Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (refl_equal x)) v.
+ Let nu_inv (y:A) (v:x = y) : x = y := comp (nu (eq_refl x)) v.
Remark nu_left_inv : forall (y:A) (u:x = y), nu_inv (nu u) = u.
Proof.
intros.
- case u; unfold nu_inv in |- *.
+ case u; unfold nu_inv.
apply trans_sym_eq.
Qed.
@@ -90,10 +90,10 @@ Section EqdepDec.
Qed.
Theorem K_dec :
- forall P:x = x -> Prop, P (refl_equal x) -> forall p:x = x, P p.
+ forall P:x = x -> Prop, P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros.
- elim eq_proofs_unicity with x (refl_equal x) p.
+ elim eq_proofs_unicity with x (eq_refl x) p.
trivial.
Qed.
@@ -115,7 +115,7 @@ Section EqdepDec.
Proof.
intros.
cut (proj (ex_intro P x y) y = proj (ex_intro P x y') y).
- simpl in |- *.
+ simpl.
case (eq_dec x x).
intro e.
elim e using K_dec; trivial.
@@ -135,7 +135,7 @@ Require Import EqdepFacts.
Theorem K_dec_type :
forall A:Type,
(forall x y:A, {x = y} + {x <> y}) ->
- forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof.
intros A eq_dec x P H p.
elim p using K_dec; intros.
@@ -146,7 +146,7 @@ Qed.
Theorem K_dec_set :
forall A:Set,
(forall x y:A, {x = y} + {x <> y}) ->
- forall (x:A) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:A) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof fun A => K_dec_type (A:=A).
(** We deduce the [eq_rect_eq] axiom for (decidable) types *)
@@ -212,13 +212,13 @@ Module DecidableEqDep (M:DecidableType).
(** Uniqueness of Reflexive Identity Proofs *)
- Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+ Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (K_dec_type eq_dec).
(** Injectivity of equality on dependent pairs in [Type] *)
@@ -281,13 +281,13 @@ Module DecidableEqDepSet (M:DecidableSet).
(** Uniqueness of Reflexive Identity Proofs *)
- Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+ Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof N.UIP_refl.
(** Streicher's axiom K *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof N.Streicher_K.
(** Proof-irrelevance on subsets of decidable sets *)
@@ -301,7 +301,7 @@ Module DecidableEqDepSet (M:DecidableSet).
Lemma inj_pair2 :
forall (P:U -> Type) (p:U) (x y:P p),
- existS P p x = existS P p y -> x = y.
+ existT P p x = existT P p y -> x = y.
Proof eq_dep_eq__inj_pair2 U N.eq_dep_eq.
(** Injectivity of equality on dependent pairs with second component