summaryrefslogtreecommitdiff
path: root/theories/Logic/EqdepFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/EqdepFacts.v')
-rw-r--r--theories/Logic/EqdepFacts.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index d84cd824..a22f286e 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -101,7 +101,7 @@ Section Dependent_Equality.
forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y.
Proof.
destruct 1.
- apply eq_dep1_intro with (refl_equal p).
+ apply eq_dep1_intro with (eq_refl p).
simpl; trivial.
Qed.
@@ -121,7 +121,7 @@ Proof.
apply eq_dep_intro.
Qed.
-Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
+Notation eq_sigS_eq_dep := eq_sigT_eq_dep (compat "8.2"). (* Compatibility *)
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
@@ -250,12 +250,12 @@ Section Equivalences.
(** Uniqueness of Reflexive Identity Proofs *)
Definition UIP_refl_ :=
- forall (x:U) (p:x = x), p = refl_equal x.
+ forall (x:U) (p:x = x), p = eq_refl x.
(** Streicher's axiom K *)
Definition Streicher_K_ :=
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
(** Injectivity of Dependent Equality is a consequence of *)
(** Invariance by Substitution of Reflexive Equality Proof *)
@@ -389,14 +389,14 @@ Proof (eq_dep_eq__UIP U eq_dep_eq).
(** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *)
-Lemma UIP_refl : forall (x:U) (p:x = x), p = refl_equal x.
+Lemma UIP_refl : forall (x:U) (p:x = x), p = eq_refl x.
Proof (UIP__UIP_refl U UIP).
(** Streicher's axiom K is a direct consequence of Uniqueness of
Reflexive Identity Proofs *)
Lemma Streicher_K :
- forall (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p.
+ forall (x:U) (P:x = x -> Prop), P (eq_refl x) -> forall p:x = x, P p.
Proof (UIP_refl__Streicher_K U UIP_refl).
End Axioms.