summaryrefslogtreecommitdiff
path: root/theories/Logic/ClassicalFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/ClassicalFacts.v')
-rw-r--r--theories/Logic/ClassicalFacts.v452
1 files changed, 228 insertions, 224 deletions
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index 70da74d3..dd911db6 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -7,39 +7,39 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalFacts.v 8892 2006-06-04 17:59:53Z herbelin $ i*)
+(*i $Id: ClassicalFacts.v 9245 2006-10-17 12:53:34Z notin $ i*)
-(** ** Some facts and definitions about classical logic
+(** Some facts and definitions about classical logic
Table of contents:
-A. Propositional degeneracy = excluded-middle + propositional extensionality
+1. Propositional degeneracy = excluded-middle + propositional extensionality
-B. Classical logic and proof-irrelevance
+2. Classical logic and proof-irrelevance
-B. 1. CC |- prop. ext. + A inhabited -> (A = A->A) -> A has fixpoint
+2.1. CC |- prop. ext. + A inhabited -> (A = A->A) -> A has fixpoint
-B. 2. CC |- prop. ext. + dep elim on bool -> proof-irrelevance
+2.2. CC |- prop. ext. + dep elim on bool -> proof-irrelevance
-B. 3. CIC |- prop. ext. -> proof-irrelevance
+2.3. CIC |- prop. ext. -> proof-irrelevance
-B. 4. CC |- excluded-middle + dep elim on bool -> proof-irrelevance
+2.4. CC |- excluded-middle + dep elim on bool -> proof-irrelevance
-B. 5. CIC |- excluded-middle -> proof-irrelevance
+2.5. CIC |- excluded-middle -> proof-irrelevance
-C. Weak classical axioms
+3. Weak classical axioms
-C. 1. Weak excluded middle
+3.1. Weak excluded middle
-C. 2. Gödel-Dummet axiom and right distributivity of implication over
+3.2. Gödel-Dummet axiom and right distributivity of implication over
disjunction
-C. 3. Independence of general premises and drinker's paradox
+3 3. Independence of general premises and drinker's paradox
*)
(************************************************************************)
-(** *** A. Prop degeneracy = excluded-middle + prop extensionality *)
+(** * Prop degeneracy = excluded-middle + prop extensionality *)
(**
i.e. [(forall A, A=True \/ A=False)
<->
@@ -61,41 +61,41 @@ Definition excluded_middle := forall A:Prop, A \/ ~ A.
Lemma prop_degen_ext : prop_degeneracy -> prop_extensionality.
Proof.
-intros H A B [Hab Hba].
-destruct (H A); destruct (H B).
- rewrite H1; exact H0.
- absurd B.
- rewrite H1; exact (fun H => H).
- apply Hab; rewrite H0; exact I.
- absurd A.
- rewrite H0; exact (fun H => H).
- apply Hba; rewrite H1; exact I.
- rewrite H1; exact H0.
+ intros H A B [Hab Hba].
+ destruct (H A); destruct (H B).
+ rewrite H1; exact H0.
+ absurd B.
+ rewrite H1; exact (fun H => H).
+ apply Hab; rewrite H0; exact I.
+ absurd A.
+ rewrite H0; exact (fun H => H).
+ apply Hba; rewrite H1; exact I.
+ rewrite H1; exact H0.
Qed.
Lemma prop_degen_em : prop_degeneracy -> excluded_middle.
Proof.
-intros H A.
-destruct (H A).
- left; rewrite H0; exact I.
- right; rewrite H0; exact (fun x => x).
+ intros H A.
+ destruct (H A).
+ left; rewrite H0; exact I.
+ right; rewrite H0; exact (fun x => x).
Qed.
Lemma prop_ext_em_degen :
- prop_extensionality -> excluded_middle -> prop_degeneracy.
+ prop_extensionality -> excluded_middle -> prop_degeneracy.
Proof.
-intros Ext EM A.
-destruct (EM A).
- left; apply (Ext A True); split;
- [ exact (fun _ => I) | exact (fun _ => H) ].
- right; apply (Ext A False); split; [ exact H | apply False_ind ].
+ intros Ext EM A.
+ destruct (EM A).
+ left; apply (Ext A True); split;
+ [ exact (fun _ => I) | exact (fun _ => H) ].
+ right; apply (Ext A False); split; [ exact H | apply False_ind ].
Qed.
(************************************************************************)
-(** *** B. Classical logic and proof-irrelevance *)
+(** * Classical logic and proof-irrelevance *)
(************************************************************************)
-(** **** B. 1. CC |- prop ext + A inhabited -> (A = A->A) -> A has fixpoint *)
+(** ** CC |- prop ext + A inhabited -> (A = A->A) -> A has fixpoint *)
(** We successively show that:
@@ -110,41 +110,41 @@ Qed.
Definition inhabited (A:Prop) := A.
Lemma prop_ext_A_eq_A_imp_A :
- prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
+ prop_extensionality -> forall A:Prop, inhabited A -> (A -> A) = A.
Proof.
-intros Ext A a.
-apply (Ext (A -> A) A); split; [ exact (fun _ => a) | exact (fun _ _ => a) ].
+ intros Ext A a.
+ apply (Ext (A -> A) A); split; [ exact (fun _ => a) | exact (fun _ _ => a) ].
Qed.
Record retract (A B:Prop) : Prop :=
{f1 : A -> B; f2 : B -> A; f1_o_f2 : forall x:B, f1 (f2 x) = x}.
Lemma prop_ext_retract_A_A_imp_A :
- prop_extensionality -> forall A:Prop, inhabited A -> retract A (A -> A).
+ prop_extensionality -> forall A:Prop, inhabited A -> retract A (A -> A).
Proof.
-intros Ext A a.
-rewrite (prop_ext_A_eq_A_imp_A Ext A a).
-exists (fun x:A => x) (fun x:A => x).
-reflexivity.
+ intros Ext A a.
+ rewrite (prop_ext_A_eq_A_imp_A Ext A a).
+ exists (fun x:A => x) (fun x:A => x).
+ reflexivity.
Qed.
Record has_fixpoint (A:Prop) : Prop :=
{F : (A -> A) -> A; Fix : forall f:A -> A, F f = f (F f)}.
Lemma ext_prop_fixpoint :
- prop_extensionality -> forall A:Prop, inhabited A -> has_fixpoint A.
+ prop_extensionality -> forall A:Prop, inhabited A -> has_fixpoint A.
Proof.
-intros Ext A a.
-case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
-exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
-intro f.
-pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
-rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
-reflexivity.
+ intros Ext A a.
+ case (prop_ext_retract_A_A_imp_A Ext A a); intros g1 g2 g1_o_g2.
+ exists (fun f => (fun x:A => f (g1 x x)) (g2 (fun x => f (g1 x x)))).
+ intro f.
+ pattern (g1 (g2 (fun x:A => f (g1 x x)))) at 1 in |- *.
+ rewrite (g1_o_g2 (fun x:A => f (g1 x x))).
+ reflexivity.
Qed.
(************************************************************************)
-(** **** B. 2. CC |- prop_ext /\ dep elim on bool -> proof-irrelevance *)
+(** ** CC |- prop_ext /\ dep elim on bool -> proof-irrelevance *)
(** [proof_irrelevance] asserts equality of all proofs of a given formula *)
Definition proof_irrelevance := forall (A:Prop) (a1 a2:A), a1 = a2.
@@ -161,44 +161,44 @@ Definition proof_irrelevance := forall (A:Prop) (a1 a2:A), a1 = a2.
Section Proof_irrelevance_gen.
-Variable bool : Prop.
-Variable true : bool.
-Variable false : bool.
-Hypothesis bool_elim : forall C:Prop, C -> C -> bool -> C.
-Hypothesis
- bool_elim_redl : forall (C:Prop) (c1 c2:C), c1 = bool_elim C c1 c2 true.
-Hypothesis
- bool_elim_redr : forall (C:Prop) (c1 c2:C), c2 = bool_elim C c1 c2 false.
-Let bool_dep_induction :=
+ Variable bool : Prop.
+ Variable true : bool.
+ Variable false : bool.
+ Hypothesis bool_elim : forall C:Prop, C -> C -> bool -> C.
+ Hypothesis
+ bool_elim_redl : forall (C:Prop) (c1 c2:C), c1 = bool_elim C c1 c2 true.
+ Hypothesis
+ bool_elim_redr : forall (C:Prop) (c1 c2:C), c2 = bool_elim C c1 c2 false.
+ Let bool_dep_induction :=
forall P:bool -> Prop, P true -> P false -> forall b:bool, P b.
-Lemma aux : prop_extensionality -> bool_dep_induction -> true = false.
-Proof.
-intros Ext Ind.
-case (ext_prop_fixpoint Ext bool true); intros G Gfix.
-set (neg := fun b:bool => bool_elim bool false true b).
-generalize (refl_equal (G neg)).
-pattern (G neg) at 1 in |- *.
-apply Ind with (b := G neg); intro Heq.
-rewrite (bool_elim_redl bool false true).
-change (true = neg true) in |- *; rewrite Heq; apply Gfix.
-rewrite (bool_elim_redr bool false true).
-change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
- apply Gfix.
-Qed.
-
-Lemma ext_prop_dep_proof_irrel_gen :
- prop_extensionality -> bool_dep_induction -> proof_irrelevance.
-Proof.
-intros Ext Ind A a1 a2.
-set (f := fun b:bool => bool_elim A a1 a2 b).
-rewrite (bool_elim_redl A a1 a2).
-change (f true = a2) in |- *.
-rewrite (bool_elim_redr A a1 a2).
-change (f true = f false) in |- *.
-rewrite (aux Ext Ind).
-reflexivity.
-Qed.
+ Lemma aux : prop_extensionality -> bool_dep_induction -> true = false.
+ Proof.
+ intros Ext Ind.
+ case (ext_prop_fixpoint Ext bool true); intros G Gfix.
+ set (neg := fun b:bool => bool_elim bool false true b).
+ generalize (refl_equal (G neg)).
+ pattern (G neg) at 1 in |- *.
+ apply Ind with (b := G neg); intro Heq.
+ rewrite (bool_elim_redl bool false true).
+ change (true = neg true) in |- *; rewrite Heq; apply Gfix.
+ rewrite (bool_elim_redr bool false true).
+ change (neg false = false) in |- *; rewrite Heq; symmetry in |- *;
+ apply Gfix.
+ Qed.
+
+ Lemma ext_prop_dep_proof_irrel_gen :
+ prop_extensionality -> bool_dep_induction -> proof_irrelevance.
+ Proof.
+ intros Ext Ind A a1 a2.
+ set (f := fun b:bool => bool_elim A a1 a2 b).
+ rewrite (bool_elim_redl A a1 a2).
+ change (f true = a2) in |- *.
+ rewrite (bool_elim_redr A a1 a2).
+ change (f true = f false) in |- *.
+ rewrite (aux Ext Ind).
+ reflexivity.
+ Qed.
End Proof_irrelevance_gen.
@@ -208,29 +208,30 @@ End Proof_irrelevance_gen.
*)
Section Proof_irrelevance_Prop_Ext_CC.
-
-Definition BoolP := forall C:Prop, C -> C -> C.
-Definition TrueP : BoolP := fun C c1 c2 => c1.
-Definition FalseP : BoolP := fun C c1 c2 => c2.
-Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2.
-Definition BoolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1.
-Definition BoolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2.
-
-Definition BoolP_dep_induction :=
- forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b.
-
-Lemma ext_prop_dep_proof_irrel_cc :
- prop_extensionality -> BoolP_dep_induction -> proof_irrelevance.
-Proof
- ext_prop_dep_proof_irrel_gen BoolP TrueP FalseP BoolP_elim BoolP_elim_redl
- BoolP_elim_redr.
+
+ Definition BoolP := forall C:Prop, C -> C -> C.
+ Definition TrueP : BoolP := fun C c1 c2 => c1.
+ Definition FalseP : BoolP := fun C c1 c2 => c2.
+ Definition BoolP_elim C c1 c2 (b:BoolP) := b C c1 c2.
+ Definition BoolP_elim_redl (C:Prop) (c1 c2:C) :
+ c1 = BoolP_elim C c1 c2 TrueP := refl_equal c1.
+ Definition BoolP_elim_redr (C:Prop) (c1 c2:C) :
+ c2 = BoolP_elim C c1 c2 FalseP := refl_equal c2.
+
+ Definition BoolP_dep_induction :=
+ forall P:BoolP -> Prop, P TrueP -> P FalseP -> forall b:BoolP, P b.
+
+ Lemma ext_prop_dep_proof_irrel_cc :
+ prop_extensionality -> BoolP_dep_induction -> proof_irrelevance.
+ Proof.
+ exact (ext_prop_dep_proof_irrel_gen BoolP TrueP FalseP BoolP_elim BoolP_elim_redl
+ BoolP_elim_redr).
+ Qed.
End Proof_irrelevance_Prop_Ext_CC.
(************************************************************************)
-(** **** B. 3. CIC |- prop. ext. -> proof-irrelevance *)
+(** ** CIC |- prop. ext. -> proof-irrelevance *)
(** In the Calculus of Inductive Constructions, inductively defined booleans
enjoy dependent case analysis, hence directly proof-irrelevance from
@@ -238,21 +239,22 @@ End Proof_irrelevance_Prop_Ext_CC.
*)
Section Proof_irrelevance_CIC.
-
-Inductive boolP : Prop :=
- | trueP : boolP
- | falseP : boolP.
-Definition boolP_elim_redl (C:Prop) (c1 c2:C) :
- c1 = boolP_ind C c1 c2 trueP := refl_equal c1.
-Definition boolP_elim_redr (C:Prop) (c1 c2:C) :
- c2 = boolP_ind C c1 c2 falseP := refl_equal c2.
-Scheme boolP_indd := Induction for boolP Sort Prop.
-
-Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance.
-Proof
- fun pe =>
- ext_prop_dep_proof_irrel_gen boolP trueP falseP boolP_ind boolP_elim_redl
- boolP_elim_redr pe boolP_indd.
+
+ Inductive boolP : Prop :=
+ | trueP : boolP
+ | falseP : boolP.
+ Definition boolP_elim_redl (C:Prop) (c1 c2:C) :
+ c1 = boolP_ind C c1 c2 trueP := refl_equal c1.
+ Definition boolP_elim_redr (C:Prop) (c1 c2:C) :
+ c2 = boolP_ind C c1 c2 falseP := refl_equal c2.
+ Scheme boolP_indd := Induction for boolP Sort Prop.
+
+ Lemma ext_prop_dep_proof_irrel_cic : prop_extensionality -> proof_irrelevance.
+ Proof.
+ exact (fun pe =>
+ ext_prop_dep_proof_irrel_gen boolP trueP falseP boolP_ind boolP_elim_redl
+ boolP_elim_redr pe boolP_indd).
+ Qed.
End Proof_irrelevance_CIC.
@@ -267,12 +269,12 @@ End Proof_irrelevance_CIC.
cannot be refined.
[[Berardi90]] Stefano Berardi, "Type dependence and constructive
- mathematics", Ph. D. thesis, Dipartimento Matematica, Università di
+ mathematics", Ph. D. thesis, Dipartimento Matematica, Università di
Torino, 1990.
*)
(************************************************************************)
-(** **** B. 4. CC |- excluded-middle + dep elim on bool -> proof-irrelevance *)
+(** ** CC |- excluded-middle + dep elim on bool -> proof-irrelevance *)
(** This is a proof in the pure Calculus of Construction that
classical logic in [Prop] + dependent elimination of disjunction entails
@@ -293,60 +295,61 @@ End Proof_irrelevance_CIC.
Require Import Hurkens.
Section Proof_irrelevance_EM_CC.
-
-Variable or : Prop -> Prop -> Prop.
-Variable or_introl : forall A B:Prop, A -> or A B.
-Variable or_intror : forall A B:Prop, B -> or A B.
-Hypothesis or_elim : forall A B C:Prop, (A -> C) -> (B -> C) -> or A B -> C.
-Hypothesis
- or_elim_redl :
+
+ Variable or : Prop -> Prop -> Prop.
+ Variable or_introl : forall A B:Prop, A -> or A B.
+ Variable or_intror : forall A B:Prop, B -> or A B.
+ Hypothesis or_elim : forall A B C:Prop, (A -> C) -> (B -> C) -> or A B -> C.
+ Hypothesis
+ or_elim_redl :
forall (A B C:Prop) (f:A -> C) (g:B -> C) (a:A),
f a = or_elim A B C f g (or_introl A B a).
-Hypothesis
- or_elim_redr :
+ Hypothesis
+ or_elim_redr :
forall (A B C:Prop) (f:A -> C) (g:B -> C) (b:B),
g b = or_elim A B C f g (or_intror A B b).
-Hypothesis
- or_dep_elim :
+ Hypothesis
+ or_dep_elim :
forall (A B:Prop) (P:or A B -> Prop),
(forall a:A, P (or_introl A B a)) ->
(forall b:B, P (or_intror A B b)) -> forall b:or A B, P b.
-
-Hypothesis em : forall A:Prop, or A (~ A).
-Variable B : Prop.
-Variables b1 b2 : B.
-
-(** [p2b] and [b2p] form a retract if [~b1=b2] *)
-
-Definition p2b A := or_elim A (~ A) B (fun _ => b1) (fun _ => b2) (em A).
-Definition b2p b := b1 = b.
-
-Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
-Proof.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
- apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
- destruct (b H).
-Qed.
-Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
-Proof.
- intro not_eq_b1_b2.
- unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
- unfold b2p in |- *; intros.
- assumption.
- destruct not_eq_b1_b2.
- rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
- assumption.
-Qed.
-
-(** Using excluded-middle a second time, we get proof-irrelevance *)
-
-Theorem proof_irrelevance_cc : b1 = b2.
-Proof.
- refine (or_elim _ _ _ _ _ (em (b1 = b2))); intro H.
+
+ Hypothesis em : forall A:Prop, or A (~ A).
+ Variable B : Prop.
+ Variables b1 b2 : B.
+
+ (** [p2b] and [b2p] form a retract if [~b1=b2] *)
+
+ Definition p2b A := or_elim A (~ A) B (fun _ => b1) (fun _ => b2) (em A).
+ Definition b2p b := b1 = b.
+
+ Lemma p2p1 : forall A:Prop, A -> b2p (p2b A).
+ Proof.
+ unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p in |- *; intros.
+ apply (or_elim_redl A (~ A) B (fun _ => b1) (fun _ => b2)).
+ destruct (b H).
+ Qed.
+
+ Lemma p2p2 : b1 <> b2 -> forall A:Prop, b2p (p2b A) -> A.
+ Proof.
+ intro not_eq_b1_b2.
+ unfold p2b in |- *; intro A; apply or_dep_elim with (b := em A);
+ unfold b2p in |- *; intros.
+ assumption.
+ destruct not_eq_b1_b2.
+ rewrite <- (or_elim_redr A (~ A) B (fun _ => b1) (fun _ => b2)) in H.
+ assumption.
+ Qed.
+
+ (** Using excluded-middle a second time, we get proof-irrelevance *)
+
+ Theorem proof_irrelevance_cc : b1 = b2.
+ Proof.
+ refine (or_elim _ _ _ _ _ (em (b1 = b2))); intro H.
trivial.
- apply (paradox B p2b b2p (p2p2 H) p2p1).
-Qed.
+ apply (paradox B p2b b2p (p2p2 H) p2p1).
+ Qed.
End Proof_irrelevance_EM_CC.
@@ -357,7 +360,7 @@ End Proof_irrelevance_EM_CC.
*)
(************************************************************************)
-(** **** B. 5. CIC |- excluded-middle -> proof-irrelevance *)
+(** ** CIC |- excluded-middle -> proof-irrelevance *)
(**
Since, dependent elimination is derivable in the Calculus of
@@ -367,18 +370,19 @@ End Proof_irrelevance_EM_CC.
Section Proof_irrelevance_CCI.
-Hypothesis em : forall A:Prop, A \/ ~ A.
-
-Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C)
- (a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a).
-Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C)
- (b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b).
-Scheme or_indd := Induction for or Sort Prop.
-
-Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2.
-Proof
- proof_irrelevance_cc or or_introl or_intror or_ind or_elim_redl
- or_elim_redr or_indd em.
+ Hypothesis em : forall A:Prop, A \/ ~ A.
+
+ Definition or_elim_redl (A B C:Prop) (f:A -> C) (g:B -> C)
+ (a:A) : f a = or_ind f g (or_introl B a) := refl_equal (f a).
+ Definition or_elim_redr (A B C:Prop) (f:A -> C) (g:B -> C)
+ (b:B) : g b = or_ind f g (or_intror A b) := refl_equal (g b).
+ Scheme or_indd := Induction for or Sort Prop.
+
+ Theorem proof_irrelevance_cci : forall (B:Prop) (b1 b2:B), b1 = b2.
+ Proof.
+ exact (proof_irrelevance_cc or or_introl or_intror or_ind or_elim_redl
+ or_elim_redr or_indd em).
+ Qed.
End Proof_irrelevance_CCI.
@@ -388,16 +392,16 @@ End Proof_irrelevance_CCI.
[em : forall A:Prop, {A}+{~A}] in the Set-impredicative CCI.
*)
-(** *** C. Weak classical axioms *)
+(** * Weak classical axioms *)
(** We show the following increasing in the strength of axioms:
- weak excluded-middle
- - right distributivity of implication over disjunction and Gödel-Dummet axiom
+ - right distributivity of implication over disjunction and Gödel-Dummet axiom
- independence of general premises and drinker's paradox
- excluded-middle
*)
-(** **** C. 1. Weak excluded-middle *)
+(** ** Weak excluded-middle *)
(** The weak classical logic based on [~~A \/ ~A] is referred to with
name KC in {[ChagrovZakharyaschev97]]
@@ -411,20 +415,20 @@ Definition weak_excluded_middle :=
(** The interest in the equivalent variant
[weak_generalized_excluded_middle] is that it holds even in logic
- without a primitive [False] connective (like Gödel-Dummett axiom) *)
+ without a primitive [False] connective (like Gödel-Dummett axiom) *)
Definition weak_generalized_excluded_middle :=
forall A B:Prop, ((A -> B) -> B) \/ (A -> B).
-(** **** C. 2. Gödel-Dummett axiom *)
+(** ** Gödel-Dummett axiom *)
-(** [(A->B) \/ (B->A)] is studied in [[Dummett59]] and is based on [[Gödel33]].
+(** [(A->B) \/ (B->A)] is studied in [[Dummett59]] and is based on [[Gödel33]].
[[Dummett59]] Michael A. E. Dummett. "A Propositional Calculus
with a Denumerable Matrix", In the Journal of Symbolic Logic, Vol
24 No. 2(1959), pp 97-103.
- [[Gödel33]] Kurt Gödel. "Zum intuitionistischen Aussagenkalkül",
+ [[Gödel33]] Kurt Gödel. "Zum intuitionistischen Aussagenkalkül",
Ergeb. Math. Koll. 4 (1933), pp. 34-38.
*)
@@ -432,7 +436,7 @@ Definition GodelDummett := forall A B:Prop, (A -> B) \/ (B -> A).
Lemma excluded_middle_Godel_Dummett : excluded_middle -> GodelDummett.
Proof.
-intros EM A B. destruct (EM B) as [HB|HnotB].
+ intros EM A B. destruct (EM B) as [HB|HnotB].
left; intros _; exact HB.
right; intros HB; destruct (HnotB HB).
Qed.
@@ -446,15 +450,15 @@ Definition RightDistributivityImplicationOverDisjunction :=
Lemma Godel_Dummett_iff_right_distr_implication_over_disjunction :
GodelDummett <-> RightDistributivityImplicationOverDisjunction.
Proof.
-split.
- intros GD A B C HCAB.
- destruct (GD B A) as [HBA|HAB]; [left|right]; intro HC;
- destruct (HCAB HC) as [HA|HB]; [ | apply HBA | apply HAB | ]; assumption.
- intros Distr A B.
- destruct (Distr A B (A\/B)) as [HABA|HABB].
- intro HAB; exact HAB.
- right; intro HB; apply HABA; right; assumption.
- left; intro HA; apply HABB; left; assumption.
+ split.
+ intros GD A B C HCAB.
+ destruct (GD B A) as [HBA|HAB]; [left|right]; intro HC;
+ destruct (HCAB HC) as [HA|HB]; [ | apply HBA | apply HAB | ]; assumption.
+ intros Distr A B.
+ destruct (Distr A B (A\/B)) as [HABA|HABB].
+ intro HAB; exact HAB.
+ right; intro HB; apply HABA; right; assumption.
+ left; intro HA; apply HABB; left; assumption.
Qed.
(** [(A->B) \/ (B->A)] is stronger than the weak excluded middle *)
@@ -462,12 +466,12 @@ Qed.
Lemma Godel_Dummett_weak_excluded_middle :
GodelDummett -> weak_excluded_middle.
Proof.
-intros GD A. destruct (GD (~A) A) as [HnotAA|HAnotA].
- left; intro HnotA; apply (HnotA (HnotAA HnotA)).
- right; intro HA; apply (HAnotA HA HA).
+ intros GD A. destruct (GD (~A) A) as [HnotAA|HAnotA].
+ left; intro HnotA; apply (HnotA (HnotAA HnotA)).
+ right; intro HA; apply (HAnotA HA HA).
Qed.
-(** **** C. 3. Independence of general premises and drinker's paradox *)
+(** ** Independence of general premises and drinker's paradox *)
(** Independence of general premises is the unconstrained, non
constructive, version of the Independence of Premises as
@@ -475,13 +479,13 @@ Qed.
It is a generalization to predicate logic of the right
distributivity of implication over disjunction (hence of
- Gödel-Dummett axiom) whose own constructive form (obtained by a
+ Gödel-Dummett axiom) whose own constructive form (obtained by a
restricting the third formula to be negative) is called
Kreisel-Putnam principle [[KreiselPutnam57]].
[[KreiselPutnam57]], Georg Kreisel and Hilary Putnam. "Eine
- Unableitsbarkeitsbeweismethode für den intuitionistischen
- Aussagenkalkül". Archiv für Mathematische Logik und
+ Unableitsbarkeitsbeweismethode für den intuitionistischen
+ Aussagenkalkül". Archiv für Mathematische Logik und
Graundlagenforschung, 3:74- 78, 1957.
[[Troelstra73]], Anne Troelstra, editor. Metamathematical
@@ -499,33 +503,33 @@ Lemma
independence_general_premises_right_distr_implication_over_disjunction :
IndependenceOfGeneralPremises -> RightDistributivityImplicationOverDisjunction.
Proof.
-intros IP A B C HCAB.
-destruct (IP bool (fun b => if b then A else B) C true) as ([|],H).
- intro HC; destruct (HCAB HC); [exists true|exists false]; assumption.
- left; assumption.
- right; assumption.
+ intros IP A B C HCAB.
+ destruct (IP bool (fun b => if b then A else B) C true) as ([|],H).
+ intro HC; destruct (HCAB HC); [exists true|exists false]; assumption.
+ left; assumption.
+ right; assumption.
Qed.
Lemma independence_general_premises_Godel_Dummett :
IndependenceOfGeneralPremises -> GodelDummett.
Proof.
-destruct Godel_Dummett_iff_right_distr_implication_over_disjunction.
-auto using independence_general_premises_right_distr_implication_over_disjunction.
+ destruct Godel_Dummett_iff_right_distr_implication_over_disjunction.
+ auto using independence_general_premises_right_distr_implication_over_disjunction.
Qed.
(** Independence of general premises is equivalent to the drinker's paradox *)
Definition DrinkerParadox :=
forall (A:Type) (P:A -> Prop),
- inhabited A -> exists x, (exists x, P x) -> P x.
+ inhabited A -> exists x, (exists x, P x) -> P x.
Lemma independence_general_premises_drinker :
IndependenceOfGeneralPremises <-> DrinkerParadox.
Proof.
-split.
- intros IP A P InhA; apply (IP A P (exists x, P x) InhA); intro Hx; exact Hx.
- intros Drinker A P Q InhA H; destruct (Drinker A P InhA) as (x,Hx).
- exists x; intro HQ; apply (Hx (H HQ)).
+ split.
+ intros IP A P InhA; apply (IP A P (exists x, P x) InhA); intro Hx; exact Hx.
+ intros Drinker A P Q InhA H; destruct (Drinker A P InhA) as (x,Hx).
+ exists x; intro HQ; apply (Hx (H HQ)).
Qed.
(** Independence of general premises is weaker than (generalized)
@@ -537,9 +541,9 @@ Definition generalized_excluded_middle :=
Lemma excluded_middle_independence_general_premises :
generalized_excluded_middle -> DrinkerParadox.
Proof.
-intros GEM A P x0.
-destruct (GEM (exists x, P x) (P x0)) as [(x,Hx)|Hnot].
- exists x; intro; exact Hx.
- exists x0; exact Hnot.
+ intros GEM A P x0.
+ destruct (GEM (exists x, P x) (P x0)) as [(x,Hx)|Hnot].
+ exists x; intro; exact Hx.
+ exists x0; exact Hnot.
Qed.