summaryrefslogtreecommitdiff
path: root/theories/Logic/ClassicalEpsilon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/ClassicalEpsilon.v')
-rw-r--r--theories/Logic/ClassicalEpsilon.v68
1 files changed, 40 insertions, 28 deletions
diff --git a/theories/Logic/ClassicalEpsilon.v b/theories/Logic/ClassicalEpsilon.v
index b7293bec..6d0a9c77 100644
--- a/theories/Logic/ClassicalEpsilon.v
+++ b/theories/Logic/ClassicalEpsilon.v
@@ -6,9 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalEpsilon.v 8933 2006-06-09 14:08:38Z herbelin $ i*)
+(*i $Id: ClassicalEpsilon.v 9245 2006-10-17 12:53:34Z notin $ i*)
-(** *** This file provides classical logic and indefinite description
+(** This file provides classical logic and indefinite description
(Hilbert's epsilon operator) *)
(** Classical epsilon's operator (i.e. indefinite description) implies
@@ -21,37 +21,39 @@ Require Import ChoiceFacts.
Set Implicit Arguments.
-Notation Local "'inhabited' A" := A (at level 200, only parsing).
-
Axiom constructive_indefinite_description :
forall (A : Type) (P : A->Prop),
- (ex P) -> { x : A | P x }.
+ (exists x, P x) -> { x : A | P x }.
Lemma constructive_definite_description :
forall (A : Type) (P : A->Prop),
- (exists! x : A, P x) -> { x : A | P x }.
+ (exists! x, P x) -> { x : A | P x }.
Proof.
-intros; apply constructive_indefinite_description; firstorder.
+ intros; apply constructive_indefinite_description; firstorder.
Qed.
Theorem excluded_middle_informative : forall P:Prop, {P} + {~ P}.
Proof.
-apply
- (constructive_definite_descr_excluded_middle
- constructive_definite_description classic).
+ apply
+ (constructive_definite_descr_excluded_middle
+ constructive_definite_description classic).
Qed.
Theorem classical_indefinite_description :
forall (A : Type) (P : A->Prop), inhabited A ->
- { x : A | ex P -> P x }.
+ { x : A | (exists x, P x) -> P x }.
Proof.
-intros A P i.
-destruct (excluded_middle_informative (exists x, P x)) as [Hex|HnonP].
- apply constructive_indefinite_description with (P:= fun x => ex P -> P x).
+ intros A P i.
+ destruct (excluded_middle_informative (exists x, P x)) as [Hex|HnonP].
+ apply constructive_indefinite_description
+ with (P:= fun x => (exists x, P x) -> P x).
destruct Hex as (x,Hx).
exists x; intros _; exact Hx.
- firstorder.
-Qed.
+ assert {x : A | True} as (a,_).
+ apply constructive_indefinite_description with (P := fun _ : A => True).
+ destruct i as (a); firstorder.
+ firstorder.
+Defined.
(** Hilbert's epsilon operator *)
@@ -59,11 +61,9 @@ Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A
:= proj1_sig (classical_indefinite_description P i).
Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) :
- (ex P) -> P (epsilon i P)
+ (exists x, P x) -> P (epsilon i P)
:= proj2_sig (classical_indefinite_description P i).
-Opaque epsilon.
-
(** Open question: is classical_indefinite_description constructively
provable from [relational_choice] and
[constructive_definite_description] (at least, using the fact that
@@ -72,19 +72,31 @@ Opaque epsilon.
[classical_indefinite_description] is provable (see
[relative_non_contradiction_of_indefinite_desc]). *)
-(** Remark: we use [ex P] rather than [exists x, P x] (which is [ex
- (fun x => P x)] to ease unification *)
+(** A proof that if [P] is inhabited, [epsilon a P] does not depend on
+ the actual proof that the domain of [P] is inhabited
+ (proof idea kindly provided by Pierre Castéran) *)
+
+Lemma epsilon_inh_irrelevance :
+ forall (A:Type) (i j : inhabited A) (P:A->Prop),
+ (exists x, P x) -> epsilon i P = epsilon j P.
+Proof.
+ intros.
+ unfold epsilon, classical_indefinite_description.
+ destruct (excluded_middle_informative (exists x : A, P x)) as [|[]]; trivial.
+Qed.
+
+Opaque epsilon.
(** *** Weaker lemmas (compatibility lemmas) *)
Theorem choice :
- forall (A B : Type) (R : A->B->Prop),
- (forall x : A, exists y : B, R x y) ->
- (exists f : A->B, forall x : A, R x (f x)).
+ forall (A B : Type) (R : A->B->Prop),
+ (forall x : A, exists y : B, R x y) ->
+ (exists f : A->B, forall x : A, R x (f x)).
Proof.
-intros A B R H.
-exists (fun x => proj1_sig (constructive_indefinite_description (H x))).
-intro x.
-apply (proj2_sig (constructive_indefinite_description (H x))).
+ intros A B R H.
+ exists (fun x => proj1_sig (constructive_indefinite_description _ (H x))).
+ intro x.
+ apply (proj2_sig (constructive_indefinite_description _ (H x))).
Qed.