summaryrefslogtreecommitdiff
path: root/theories/Logic/ClassicalDescription.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Logic/ClassicalDescription.v')
-rw-r--r--theories/Logic/ClassicalDescription.v78
1 files changed, 78 insertions, 0 deletions
diff --git a/theories/Logic/ClassicalDescription.v b/theories/Logic/ClassicalDescription.v
new file mode 100644
index 00000000..6602cd73
--- /dev/null
+++ b/theories/Logic/ClassicalDescription.v
@@ -0,0 +1,78 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ClassicalDescription.v,v 1.7.2.1 2004/07/16 19:31:06 herbelin Exp $ i*)
+
+(** This file provides classical logic and definite description *)
+
+(** Classical logic and definite description, as shown in [1],
+ implies the double-negation of excluded-middle in Set, hence it
+ implies a strongly classical world. Especially it conflicts with
+ impredicativity of Set, knowing that true<>false in Set.
+
+ [1] Laurent Chicli, Loïc Pottier, Carlos Simpson, Mathematical
+ Quotients and Quotient Types in Coq, Proceedings of TYPES 2002,
+ Lecture Notes in Computer Science 2646, Springer Verlag.
+*)
+
+Require Export Classical.
+
+Axiom
+ dependent_description :
+ forall (A:Type) (B:A -> Type) (R:forall x:A, B x -> Prop),
+ (forall x:A,
+ exists y : B x, R x y /\ (forall y':B x, R x y' -> y = y')) ->
+ exists f : forall x:A, B x, (forall x:A, R x (f x)).
+
+(** Principle of definite descriptions (aka axiom of unique choice) *)
+
+Theorem description :
+ forall (A B:Type) (R:A -> B -> Prop),
+ (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) ->
+ exists f : A -> B, (forall x:A, R x (f x)).
+Proof.
+intros A B.
+apply (dependent_description A (fun _ => B)).
+Qed.
+
+(** The followig proof comes from [1] *)
+
+Theorem classic_set : ((forall P:Prop, {P} + {~ P}) -> False) -> False.
+Proof.
+intro HnotEM.
+set (R := fun A b => A /\ true = b \/ ~ A /\ false = b).
+assert (H : exists f : Prop -> bool, (forall A:Prop, R A (f A))).
+apply description.
+intro A.
+destruct (classic A) as [Ha| Hnota].
+ exists true; split.
+ left; split; [ assumption | reflexivity ].
+ intros y [[_ Hy]| [Hna _]].
+ assumption.
+ contradiction.
+ exists false; split.
+ right; split; [ assumption | reflexivity ].
+ intros y [[Ha _]| [_ Hy]].
+ contradiction.
+ assumption.
+destruct H as [f Hf].
+apply HnotEM.
+intro P.
+assert (HfP := Hf P).
+(* Elimination from Hf to Set is not allowed but from f to Set yes ! *)
+destruct (f P).
+ left.
+ destruct HfP as [[Ha _]| [_ Hfalse]].
+ assumption.
+ discriminate.
+ right.
+ destruct HfP as [[_ Hfalse]| [Hna _]].
+ discriminate.
+ assumption.
+Qed.
+