summaryrefslogtreecommitdiff
path: root/theories/Lists/ListSet.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/ListSet.v')
-rw-r--r--theories/Lists/ListSet.v398
1 files changed, 398 insertions, 0 deletions
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
new file mode 100644
index 00000000..d5ecad9c
--- /dev/null
+++ b/theories/Lists/ListSet.v
@@ -0,0 +1,398 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ListSet.v,v 1.13.2.1 2004/07/16 19:31:05 herbelin Exp $ i*)
+
+(** A Library for finite sets, implemented as lists
+ A Library with similar interface will soon be available under
+ the name TreeSet in the theories/Trees directory *)
+
+(** PolyList is loaded, but not exported.
+ This allow to "hide" the definitions, functions and theorems of PolyList
+ and to see only the ones of ListSet *)
+
+Require Import List.
+
+Set Implicit Arguments.
+
+Section first_definitions.
+
+ Variable A : Set.
+ Hypothesis Aeq_dec : forall x y:A, {x = y} + {x <> y}.
+
+ Definition set := list A.
+
+ Definition empty_set : set := nil.
+
+ Fixpoint set_add (a:A) (x:set) {struct x} : set :=
+ match x with
+ | nil => a :: nil
+ | a1 :: x1 =>
+ match Aeq_dec a a1 with
+ | left _ => a1 :: x1
+ | right _ => a1 :: set_add a x1
+ end
+ end.
+
+
+ Fixpoint set_mem (a:A) (x:set) {struct x} : bool :=
+ match x with
+ | nil => false
+ | a1 :: x1 =>
+ match Aeq_dec a a1 with
+ | left _ => true
+ | right _ => set_mem a x1
+ end
+ end.
+
+ (** If [a] belongs to [x], removes [a] from [x]. If not, does nothing *)
+ Fixpoint set_remove (a:A) (x:set) {struct x} : set :=
+ match x with
+ | nil => empty_set
+ | a1 :: x1 =>
+ match Aeq_dec a a1 with
+ | left _ => x1
+ | right _ => a1 :: set_remove a x1
+ end
+ end.
+
+ Fixpoint set_inter (x:set) : set -> set :=
+ match x with
+ | nil => fun y => nil
+ | a1 :: x1 =>
+ fun y =>
+ if set_mem a1 y then a1 :: set_inter x1 y else set_inter x1 y
+ end.
+
+ Fixpoint set_union (x y:set) {struct y} : set :=
+ match y with
+ | nil => x
+ | a1 :: y1 => set_add a1 (set_union x y1)
+ end.
+
+ (** returns the set of all els of [x] that does not belong to [y] *)
+ Fixpoint set_diff (x y:set) {struct x} : set :=
+ match x with
+ | nil => nil
+ | a1 :: x1 =>
+ if set_mem a1 y then set_diff x1 y else set_add a1 (set_diff x1 y)
+ end.
+
+
+ Definition set_In : A -> set -> Prop := In (A:=A).
+
+ Lemma set_In_dec : forall (a:A) (x:set), {set_In a x} + {~ set_In a x}.
+
+ Proof.
+ unfold set_In in |- *.
+ (*** Realizer set_mem. Program_all. ***)
+ simple induction x.
+ auto.
+ intros a0 x0 Ha0. case (Aeq_dec a a0); intro eq.
+ rewrite eq; simpl in |- *; auto with datatypes.
+ elim Ha0.
+ auto with datatypes.
+ right; simpl in |- *; unfold not in |- *; intros [Hc1| Hc2];
+ auto with datatypes.
+ Qed.
+
+ Lemma set_mem_ind :
+ forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ (set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).
+
+ Proof.
+ simple induction x; simpl in |- *; intros.
+ assumption.
+ elim (Aeq_dec a a0); auto with datatypes.
+ Qed.
+
+ Lemma set_mem_ind2 :
+ forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ (set_In a x -> P y) ->
+ (~ set_In a x -> P z) -> P (if set_mem a x then y else z).
+
+ Proof.
+ simple induction x; simpl in |- *; intros.
+ apply H0; red in |- *; trivial.
+ case (Aeq_dec a a0); auto with datatypes.
+ intro; apply H; intros; auto.
+ apply H1; red in |- *; intro.
+ case H3; auto.
+ Qed.
+
+
+ Lemma set_mem_correct1 :
+ forall (a:A) (x:set), set_mem a x = true -> set_In a x.
+ Proof.
+ simple induction x; simpl in |- *.
+ discriminate.
+ intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
+ Qed.
+
+ Lemma set_mem_correct2 :
+ forall (a:A) (x:set), set_In a x -> set_mem a x = true.
+ Proof.
+ simple induction x; simpl in |- *.
+ intro Ha; elim Ha.
+ intros a0 l; elim (Aeq_dec a a0); auto with datatypes.
+ intros H1 H2 [H3| H4].
+ absurd (a0 = a); auto with datatypes.
+ auto with datatypes.
+ Qed.
+
+ Lemma set_mem_complete1 :
+ forall (a:A) (x:set), set_mem a x = false -> ~ set_In a x.
+ Proof.
+ simple induction x; simpl in |- *.
+ tauto.
+ intros a0 l; elim (Aeq_dec a a0).
+ intros; discriminate H0.
+ unfold not in |- *; intros; elim H1; auto with datatypes.
+ Qed.
+
+ Lemma set_mem_complete2 :
+ forall (a:A) (x:set), ~ set_In a x -> set_mem a x = false.
+ Proof.
+ simple induction x; simpl in |- *.
+ tauto.
+ intros a0 l; elim (Aeq_dec a a0).
+ intros; elim H0; auto with datatypes.
+ tauto.
+ Qed.
+
+ Lemma set_add_intro1 :
+ forall (a b:A) (x:set), set_In a x -> set_In a (set_add b x).
+
+ Proof.
+ unfold set_In in |- *; simple induction x; simpl in |- *.
+ auto with datatypes.
+ intros a0 l H [Ha0a| Hal].
+ elim (Aeq_dec b a0); left; assumption.
+ elim (Aeq_dec b a0); right; [ assumption | auto with datatypes ].
+ Qed.
+
+ Lemma set_add_intro2 :
+ forall (a b:A) (x:set), a = b -> set_In a (set_add b x).
+
+ Proof.
+ unfold set_In in |- *; simple induction x; simpl in |- *.
+ auto with datatypes.
+ intros a0 l H Hab.
+ elim (Aeq_dec b a0);
+ [ rewrite Hab; intro Hba0; rewrite Hba0; simpl in |- *;
+ auto with datatypes
+ | auto with datatypes ].
+ Qed.
+
+ Hint Resolve set_add_intro1 set_add_intro2.
+
+ Lemma set_add_intro :
+ forall (a b:A) (x:set), a = b \/ set_In a x -> set_In a (set_add b x).
+
+ Proof.
+ intros a b x [H1| H2]; auto with datatypes.
+ Qed.
+
+ Lemma set_add_elim :
+ forall (a b:A) (x:set), set_In a (set_add b x) -> a = b \/ set_In a x.
+
+ Proof.
+ unfold set_In in |- *.
+ simple induction x.
+ simpl in |- *; intros [H1| H2]; auto with datatypes.
+ simpl in |- *; do 3 intro.
+ elim (Aeq_dec b a0).
+ simpl in |- *; tauto.
+ simpl in |- *; intros; elim H0.
+ trivial with datatypes.
+ tauto.
+ tauto.
+ Qed.
+
+ Lemma set_add_elim2 :
+ forall (a b:A) (x:set), set_In a (set_add b x) -> a <> b -> set_In a x.
+ intros a b x H; case (set_add_elim _ _ _ H); intros; trivial.
+ case H1; trivial.
+ Qed.
+
+ Hint Resolve set_add_intro set_add_elim set_add_elim2.
+
+ Lemma set_add_not_empty : forall (a:A) (x:set), set_add a x <> empty_set.
+ Proof.
+ simple induction x; simpl in |- *.
+ discriminate.
+ intros; elim (Aeq_dec a a0); intros; discriminate.
+ Qed.
+
+
+ Lemma set_union_intro1 :
+ forall (a:A) (x y:set), set_In a x -> set_In a (set_union x y).
+ Proof.
+ simple induction y; simpl in |- *; auto with datatypes.
+ Qed.
+
+ Lemma set_union_intro2 :
+ forall (a:A) (x y:set), set_In a y -> set_In a (set_union x y).
+ Proof.
+ simple induction y; simpl in |- *.
+ tauto.
+ intros; elim H0; auto with datatypes.
+ Qed.
+
+ Hint Resolve set_union_intro2 set_union_intro1.
+
+ Lemma set_union_intro :
+ forall (a:A) (x y:set),
+ set_In a x \/ set_In a y -> set_In a (set_union x y).
+ Proof.
+ intros; elim H; auto with datatypes.
+ Qed.
+
+ Lemma set_union_elim :
+ forall (a:A) (x y:set),
+ set_In a (set_union x y) -> set_In a x \/ set_In a y.
+ Proof.
+ simple induction y; simpl in |- *.
+ auto with datatypes.
+ intros.
+ generalize (set_add_elim _ _ _ H0).
+ intros [H1| H1].
+ auto with datatypes.
+ tauto.
+ Qed.
+
+ Lemma set_union_emptyL :
+ forall (a:A) (x:set), set_In a (set_union empty_set x) -> set_In a x.
+ intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
+ Qed.
+
+
+ Lemma set_union_emptyR :
+ forall (a:A) (x:set), set_In a (set_union x empty_set) -> set_In a x.
+ intros a x H; case (set_union_elim _ _ _ H); auto || contradiction.
+ Qed.
+
+
+ Lemma set_inter_intro :
+ forall (a:A) (x y:set),
+ set_In a x -> set_In a y -> set_In a (set_inter x y).
+ Proof.
+ simple induction x.
+ auto with datatypes.
+ simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hy.
+ simpl in |- *; rewrite Ha0a.
+ generalize (set_mem_correct1 a y).
+ generalize (set_mem_complete1 a y).
+ elim (set_mem a y); simpl in |- *; intros.
+ auto with datatypes.
+ absurd (set_In a y); auto with datatypes.
+ elim (set_mem a0 y); [ right; auto with datatypes | auto with datatypes ].
+ Qed.
+
+ Lemma set_inter_elim1 :
+ forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a x.
+ Proof.
+ simple induction x.
+ auto with datatypes.
+ simpl in |- *; intros a0 l Hrec y.
+ generalize (set_mem_correct1 a0 y).
+ elim (set_mem a0 y); simpl in |- *; intros.
+ elim H0; eauto with datatypes.
+ eauto with datatypes.
+ Qed.
+
+ Lemma set_inter_elim2 :
+ forall (a:A) (x y:set), set_In a (set_inter x y) -> set_In a y.
+ Proof.
+ simple induction x.
+ simpl in |- *; tauto.
+ simpl in |- *; intros a0 l Hrec y.
+ generalize (set_mem_correct1 a0 y).
+ elim (set_mem a0 y); simpl in |- *; intros.
+ elim H0;
+ [ intro Hr; rewrite <- Hr; eauto with datatypes | eauto with datatypes ].
+ eauto with datatypes.
+ Qed.
+
+ Hint Resolve set_inter_elim1 set_inter_elim2.
+
+ Lemma set_inter_elim :
+ forall (a:A) (x y:set),
+ set_In a (set_inter x y) -> set_In a x /\ set_In a y.
+ Proof.
+ eauto with datatypes.
+ Qed.
+
+ Lemma set_diff_intro :
+ forall (a:A) (x y:set),
+ set_In a x -> ~ set_In a y -> set_In a (set_diff x y).
+ Proof.
+ simple induction x.
+ simpl in |- *; tauto.
+ simpl in |- *; intros a0 l Hrec y [Ha0a| Hal] Hay.
+ rewrite Ha0a; generalize (set_mem_complete2 _ _ Hay).
+ elim (set_mem a y);
+ [ intro Habs; discriminate Habs | auto with datatypes ].
+ elim (set_mem a0 y); auto with datatypes.
+ Qed.
+
+ Lemma set_diff_elim1 :
+ forall (a:A) (x y:set), set_In a (set_diff x y) -> set_In a x.
+ Proof.
+ simple induction x.
+ simpl in |- *; tauto.
+ simpl in |- *; intros a0 l Hrec y; elim (set_mem a0 y).
+ eauto with datatypes.
+ intro; generalize (set_add_elim _ _ _ H).
+ intros [H1| H2]; eauto with datatypes.
+ Qed.
+
+ Lemma set_diff_elim2 :
+ forall (a:A) (x y:set), set_In a (set_diff x y) -> ~ set_In a y.
+ intros a x y; elim x; simpl in |- *.
+ intros; contradiction.
+ intros a0 l Hrec.
+ apply set_mem_ind2; auto.
+ intros H1 H2; case (set_add_elim _ _ _ H2); intros; auto.
+ rewrite H; trivial.
+ Qed.
+
+ Lemma set_diff_trivial : forall (a:A) (x:set), ~ set_In a (set_diff x x).
+ red in |- *; intros a x H.
+ apply (set_diff_elim2 _ _ _ H).
+ apply (set_diff_elim1 _ _ _ H).
+ Qed.
+
+Hint Resolve set_diff_intro set_diff_trivial.
+
+
+End first_definitions.
+
+Section other_definitions.
+
+ Variables A B : Set.
+
+ Definition set_prod : set A -> set B -> set (A * B) :=
+ list_prod (A:=A) (B:=B).
+
+ (** [B^A], set of applications from [A] to [B] *)
+ Definition set_power : set A -> set B -> set (set (A * B)) :=
+ list_power (A:=A) (B:=B).
+
+ Definition set_map : (A -> B) -> set A -> set B := map (A:=A) (B:=B).
+
+ Definition set_fold_left : (B -> A -> B) -> set A -> B -> B :=
+ fold_left (A:=B) (B:=A).
+
+ Definition set_fold_right (f:A -> B -> B) (x:set A)
+ (b:B) : B := fold_right f b x.
+
+
+End other_definitions.
+
+Unset Implicit Arguments. \ No newline at end of file