summaryrefslogtreecommitdiff
path: root/theories/Lists/List.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/List.v')
-rw-r--r--theories/Lists/List.v117
1 files changed, 95 insertions, 22 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index cc7586fe..30f1dec2 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -7,7 +7,7 @@
(************************************************************************)
Require Setoid.
-Require Import PeanoNat Le Gt Minus Bool.
+Require Import PeanoNat Le Gt Minus Bool Lt.
Set Implicit Arguments.
(* Set Universe Polymorphism. *)
@@ -21,12 +21,13 @@ Set Implicit Arguments.
Open Scope list_scope.
-(** Standard notations for lists.
+(** Standard notations for lists.
In a special module to avoid conflicts. *)
Module ListNotations.
-Notation " [ ] " := nil (format "[ ]") : list_scope.
-Notation " [ x ] " := (cons x nil) : list_scope.
-Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
+Notation "[ ]" := nil (format "[ ]") : list_scope.
+Notation "[ x ]" := (cons x nil) : list_scope.
+Notation "[ x ; y ; .. ; z ]" := (cons x (cons y .. (cons z nil) ..)) : list_scope.
+Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..) (compat "8.4") : list_scope.
End ListNotations.
Import ListNotations.
@@ -195,7 +196,7 @@ Section Facts.
Qed.
Theorem app_nil_r : forall l:list A, l ++ [] = l.
- Proof.
+ Proof.
induction l; simpl; f_equal; auto.
Qed.
@@ -248,8 +249,7 @@ Section Facts.
generalize (app_nil_r l); intros E.
rewrite -> E; auto.
intros.
- injection H.
- intro.
+ injection H as H H0.
assert ([] = l ++ a0 :: l0) by auto.
apply app_cons_not_nil in H1 as [].
Qed.
@@ -335,16 +335,16 @@ Section Facts.
absurd (length (x1 :: l1 ++ l) <= length l).
simpl; rewrite app_length; auto with arith.
rewrite H; auto with arith.
- injection H; clear H; intros; f_equal; eauto.
+ injection H as H H0; f_equal; eauto.
Qed.
End Facts.
-Hint Resolve app_assoc app_assoc_reverse: datatypes v62.
-Hint Resolve app_comm_cons app_cons_not_nil: datatypes v62.
-Hint Immediate app_eq_nil: datatypes v62.
-Hint Resolve app_eq_unit app_inj_tail: datatypes v62.
-Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes v62.
+Hint Resolve app_assoc app_assoc_reverse: datatypes.
+Hint Resolve app_comm_cons app_cons_not_nil: datatypes.
+Hint Immediate app_eq_nil: datatypes.
+Hint Resolve app_eq_unit app_inj_tail: datatypes.
+Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes.
@@ -518,7 +518,7 @@ Section Elts.
Proof.
revert l.
induction n as [|n IH]; intros [|x l] H; simpl in *; try easy.
- - exists nil; exists l. injection H; clear H; intros; now subst.
+ - exists nil; exists l. now injection H as ->.
- destruct (IH _ H) as (l1 & l2 & H1 & H2).
exists (x::l1); exists l2; simpl; split; now f_equal.
Qed.
@@ -1385,9 +1385,8 @@ End Fold_Right_Recursor.
Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
split (combine l l') = (l,l').
Proof.
- induction l; destruct l'; simpl; intros; auto; try discriminate.
- injection H; clear H; intros.
- rewrite IHl; auto.
+ induction l, l'; simpl; trivial; try discriminate.
+ now intros [= ->%IHl].
Qed.
Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
@@ -1471,7 +1470,7 @@ End Fold_Right_Recursor.
destruct (in_app_or _ _ _ H); clear H.
destruct (in_map_iff (fun y : B => (a, y)) l' (x,y)) as (H1,_).
destruct (H1 H0) as (z,(H2,H3)); clear H0 H1.
- injection H2; clear H2; intros; subst; intuition.
+ injection H2 as -> ->; intuition.
intuition.
Qed.
@@ -1545,7 +1544,7 @@ Section length_order.
End length_order.
Hint Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons:
- datatypes v62.
+ datatypes.
(******************************)
@@ -1614,7 +1613,7 @@ Section SetIncl.
End SetIncl.
Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons
- incl_app: datatypes v62.
+ incl_app: datatypes.
(**************************************)
@@ -1634,6 +1633,80 @@ Section Cutting.
end
end.
+ Lemma firstn_nil n: firstn n [] = [].
+ Proof. induction n; now simpl. Qed.
+
+ Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l).
+ Proof. now simpl. Qed.
+
+ Lemma firstn_all l: firstn (length l) l = l.
+ Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed.
+
+ Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l.
+ Proof. induction n as [|k iHk].
+ - intro. inversion 1 as [H1|?].
+ rewrite (length_zero_iff_nil l) in H1. subst. now simpl.
+ - destruct l as [|x xs]; simpl.
+ * now reflexivity.
+ * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H.
+ Qed.
+
+ Lemma firstn_O l: firstn 0 l = [].
+ Proof. now simpl. Qed.
+
+ Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n.
+ Proof.
+ induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl].
+ - auto with arith.
+ - apply Peano.le_n_S, iHk.
+ Qed.
+
+ Lemma firstn_length_le: forall l:list A, forall n:nat,
+ n <= length l -> length (firstn n l) = n.
+ Proof. induction l as [|x xs Hrec].
+ - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl.
+ - destruct n.
+ * now simpl.
+ * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H).
+ Qed.
+
+ Lemma firstn_app n:
+ forall l1 l2,
+ firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2).
+ Proof. induction n as [|k iHk]; intros l1 l2.
+ - now simpl.
+ - destruct l1 as [|x xs].
+ * unfold firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O.
+ * rewrite <- app_comm_cons. simpl. f_equal. apply iHk.
+ Qed.
+
+ Lemma firstn_app_2 n:
+ forall l1 l2,
+ firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2.
+ Proof. induction n as [| k iHk];intros l1 l2.
+ - unfold firstn at 2. rewrite <- plus_n_O, app_nil_r.
+ rewrite firstn_app. rewrite <- minus_diag_reverse.
+ unfold firstn at 2. rewrite app_nil_r. apply firstn_all.
+ - destruct l2 as [|x xs].
+ * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith.
+ * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k).
+ auto with arith.
+ rewrite H0, firstn_all2; [reflexivity | auto with arith].
+ Qed.
+
+ Lemma firstn_firstn:
+ forall l:list A,
+ forall i j : nat,
+ firstn i (firstn j l) = firstn (min i j) l.
+ Proof. induction l as [|x xs Hl].
+ - intros. simpl. now rewrite ?firstn_nil.
+ - destruct i.
+ * intro. now simpl.
+ * destruct j.
+ + now simpl.
+ + simpl. f_equal. apply Hl.
+ Qed.
+
Fixpoint skipn (n:nat)(l:list A) : list A :=
match n with
| 0 => l
@@ -2292,7 +2365,7 @@ Notation rev_acc := rev_append (only parsing).
Notation rev_acc_rev := rev_append_rev (only parsing).
Notation AllS := Forall (only parsing). (* was formerly in TheoryList *)
-Hint Resolve app_nil_end : datatypes v62.
+Hint Resolve app_nil_end : datatypes.
(* end hide *)
Section Repeat.