summaryrefslogtreecommitdiff
path: root/theories/Lists/List.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Lists/List.v')
-rw-r--r--theories/Lists/List.v1047
1 files changed, 796 insertions, 251 deletions
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index f5a12b09..3cba090f 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1,15 +1,16 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Le Gt Minus Bool Setoid.
+Require Setoid.
+Require Import PeanoNat Le Gt Minus Bool.
Set Implicit Arguments.
-
+(* Set Universe Polymorphism. *)
(******************************************************************)
(** * Basics: definition of polymorphic lists and some operations *)
@@ -20,6 +21,16 @@ Set Implicit Arguments.
Open Scope list_scope.
+(** Standard notations for lists.
+In a special module to avoid conflicts. *)
+Module ListNotations.
+Notation " [ ] " := nil (format "[ ]") : list_scope.
+Notation " [ x ] " := (cons x nil) : list_scope.
+Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
+End ListNotations.
+
+Import ListNotations.
+
Section Lists.
Variable A : Type.
@@ -28,44 +39,31 @@ Section Lists.
Definition hd (default:A) (l:list A) :=
match l with
- | nil => default
+ | [] => default
| x :: _ => x
end.
Definition hd_error (l:list A) :=
match l with
- | nil => error
+ | [] => error
| x :: _ => value x
end.
Definition tl (l:list A) :=
match l with
- | nil => nil
+ | [] => nil
| a :: m => m
end.
(** The [In] predicate *)
Fixpoint In (a:A) (l:list A) : Prop :=
match l with
- | nil => False
+ | [] => False
| b :: m => b = a \/ In a m
end.
End Lists.
-
-(** Standard notations for lists.
-In a special module to avoid conflict. *)
-Module ListNotations.
-Notation " [ ] " := nil : list_scope.
-Notation " [ x ] " := (cons x nil) : list_scope.
-Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
-End ListNotations.
-
-Import ListNotations.
-
-(** ** Facts about lists *)
-
Section Facts.
Variable A : Type.
@@ -89,6 +87,24 @@ Section Facts.
left; exists a, tail; reflexivity.
Qed.
+ Lemma hd_error_tl_repr : forall l (a:A) r,
+ hd_error l = Some a /\ tl l = r <-> l = a :: r.
+ Proof. destruct l as [|x xs].
+ - unfold hd_error, tl; intros a r. split; firstorder discriminate.
+ - intros. simpl. split.
+ * intros (H1, H2). inversion H1. rewrite H2. reflexivity.
+ * inversion 1. subst. auto.
+ Qed.
+
+ Lemma hd_error_some_nil : forall l (a:A), hd_error l = Some a -> l <> nil.
+ Proof. unfold hd_error. destruct l; now discriminate. Qed.
+
+ Theorem length_zero_iff_nil (l : list A):
+ length l = 0 <-> l=[].
+ Proof.
+ split; [now destruct l | now intros ->].
+ Qed.
+
(** *** Head and tail *)
Theorem hd_error_nil : hd_error (@nil A) = None.
@@ -119,6 +135,12 @@ Section Facts.
simpl; auto.
Qed.
+ Theorem not_in_cons (x a : A) (l : list A):
+ ~ In x (a::l) <-> x<>a /\ ~ In x l.
+ Proof.
+ simpl. intuition.
+ Qed.
+
Theorem in_nil : forall a:A, ~ In a [].
Proof.
unfold not; intros a H; inversion_clear H.
@@ -130,7 +152,7 @@ Section Facts.
subst a; auto.
exists [], l; auto.
destruct (IHl H) as (l1,(l2,H0)).
- exists (a::l1), l2; simpl; f_equal; auto.
+ exists (a::l1), l2; simpl. apply f_equal. auto.
Qed.
(** Inversion *)
@@ -173,7 +195,7 @@ Section Facts.
Qed.
Theorem app_nil_r : forall l:list A, l ++ [] = l.
- Proof.
+ Proof.
induction l; simpl; f_equal; auto.
Qed.
@@ -228,10 +250,8 @@ Section Facts.
intros.
injection H.
intro.
- cut ([] = l ++ a0 :: l0); auto.
- intro.
- generalize (app_cons_not_nil _ _ _ H1); intro.
- elim H2.
+ assert ([] = l ++ a0 :: l0) by auto.
+ apply app_cons_not_nil in H1 as [].
Qed.
Lemma app_inj_tail :
@@ -240,22 +260,20 @@ Section Facts.
induction x as [| x l IHl];
[ destruct y as [| a l] | destruct y as [| a l0] ];
simpl; auto.
- intros a b H.
- injection H.
- auto.
- intros a0 b H.
- injection H; intros.
- generalize (app_cons_not_nil _ _ _ H0); destruct 1.
- intros a b H.
- injection H; intros.
- cut ([] = l ++ [a]); auto.
- intro.
- generalize (app_cons_not_nil _ _ _ H2); destruct 1.
- intros a0 b H.
- injection H; intros.
- destruct (IHl l0 a0 b H0).
- split; auto.
- rewrite <- H1; rewrite <- H2; reflexivity.
+ - intros a b H.
+ injection H.
+ auto.
+ - intros a0 b H.
+ injection H as H1 H0.
+ apply app_cons_not_nil in H0 as [].
+ - intros a b H.
+ injection H as H1 H0.
+ assert ([] = l ++ [a]) by auto.
+ apply app_cons_not_nil in H as [].
+ - intros a0 b H.
+ injection H as <- H0.
+ destruct (IHl l0 a0 b H0) as (<-,<-).
+ split; auto.
Qed.
@@ -360,13 +378,12 @@ Section Elts.
Lemma nth_in_or_default :
forall (n:nat) (l:list A) (d:A), {In (nth n l d) l} + {nth n l d = d}.
- (* Realizer nth_ok. Program_all. *)
Proof.
- intros n l d; generalize n; induction l; intro n0.
- right; case n0; trivial.
- case n0; simpl.
- auto.
- intro n1; elim (IHl n1); auto.
+ intros n l d; revert n; induction l.
+ - right; destruct n; trivial.
+ - intros [|n]; simpl.
+ * left; auto.
+ * destruct (IHl n); auto.
Qed.
Lemma nth_S_cons :
@@ -395,60 +412,132 @@ Section Elts.
unfold nth_default; induction n; intros [ | ] ?; simpl; auto.
Qed.
+ (** Results about [nth] *)
+
Lemma nth_In :
forall (n:nat) (l:list A) (d:A), n < length l -> In (nth n l d) l.
-
Proof.
unfold lt; induction n as [| n hn]; simpl.
- destruct l; simpl; [ inversion 2 | auto ].
- destruct l as [| a l hl]; simpl.
- inversion 2.
- intros d ie; right; apply hn; auto with arith.
+ - destruct l; simpl; [ inversion 2 | auto ].
+ - destruct l as [| a l hl]; simpl.
+ * inversion 2.
+ * intros d ie; right; apply hn; auto with arith.
+ Qed.
+
+ Lemma In_nth l x d : In x l ->
+ exists n, n < length l /\ nth n l d = x.
+ Proof.
+ induction l as [|a l IH].
+ - easy.
+ - intros [H|H].
+ * subst; exists 0; simpl; auto with arith.
+ * destruct (IH H) as (n & Hn & Hn').
+ exists (S n); simpl; auto with arith.
Qed.
Lemma nth_overflow : forall l n d, length l <= n -> nth n l d = d.
Proof.
induction l; destruct n; simpl; intros; auto.
- inversion H.
- apply IHl; auto with arith.
+ - inversion H.
+ - apply IHl; auto with arith.
Qed.
Lemma nth_indep :
forall l n d d', n < length l -> nth n l d = nth n l d'.
Proof.
- induction l; simpl; intros; auto.
- inversion H.
- destruct n; simpl; auto with arith.
+ induction l.
+ - inversion 1.
+ - intros [|n] d d'; simpl; auto with arith.
Qed.
Lemma app_nth1 :
forall l l' d n, n < length l -> nth n (l++l') d = nth n l d.
Proof.
induction l.
- intros.
- inversion H.
- intros l' d n.
- case n; simpl; auto.
- intros; rewrite IHl; auto with arith.
+ - inversion 1.
+ - intros l' d [|n]; simpl; auto with arith.
Qed.
Lemma app_nth2 :
forall l l' d n, n >= length l -> nth n (l++l') d = nth (n-length l) l' d.
Proof.
- induction l.
- intros.
- simpl.
- destruct n; auto.
- intros l' d n.
- case n; simpl; auto.
- intros.
- inversion H.
- intros.
- rewrite IHl; auto with arith.
+ induction l; intros l' d [|n]; auto.
+ - inversion 1.
+ - intros; simpl; rewrite IHl; auto with arith.
+ Qed.
+
+ Lemma nth_split n l d : n < length l ->
+ exists l1, exists l2, l = l1 ++ nth n l d :: l2 /\ length l1 = n.
+ Proof.
+ revert l.
+ induction n as [|n IH]; intros [|a l] H; try easy.
+ - exists nil; exists l; now simpl.
+ - destruct (IH l) as (l1 & l2 & Hl & Hl1); auto with arith.
+ exists (a::l1); exists l2; simpl; split; now f_equal.
Qed.
+ (** Results about [nth_error] *)
+ Lemma nth_error_In l n x : nth_error l n = Some x -> In x l.
+ Proof.
+ revert n. induction l as [|a l IH]; intros [|n]; simpl; try easy.
+ - injection 1; auto.
+ - eauto.
+ Qed.
+ Lemma In_nth_error l x : In x l -> exists n, nth_error l n = Some x.
+ Proof.
+ induction l as [|a l IH].
+ - easy.
+ - intros [H|H].
+ * subst; exists 0; simpl; auto with arith.
+ * destruct (IH H) as (n,Hn).
+ exists (S n); simpl; auto with arith.
+ Qed.
+
+ Lemma nth_error_None l n : nth_error l n = None <-> length l <= n.
+ Proof.
+ revert n. induction l; destruct n; simpl.
+ - split; auto.
+ - split; auto with arith.
+ - split; now auto with arith.
+ - rewrite IHl; split; auto with arith.
+ Qed.
+
+ Lemma nth_error_Some l n : nth_error l n <> None <-> n < length l.
+ Proof.
+ revert n. induction l; destruct n; simpl.
+ - split; [now destruct 1 | inversion 1].
+ - split; [now destruct 1 | inversion 1].
+ - split; now auto with arith.
+ - rewrite IHl; split; auto with arith.
+ Qed.
+
+ Lemma nth_error_split l n a : nth_error l n = Some a ->
+ exists l1, exists l2, l = l1 ++ a :: l2 /\ length l1 = n.
+ Proof.
+ revert l.
+ induction n as [|n IH]; intros [|x l] H; simpl in *; try easy.
+ - exists nil; exists l. injection H; clear H; intros; now subst.
+ - destruct (IH _ H) as (l1 & l2 & H1 & H2).
+ exists (x::l1); exists l2; simpl; split; now f_equal.
+ Qed.
+
+ Lemma nth_error_app1 l l' n : n < length l ->
+ nth_error (l++l') n = nth_error l n.
+ Proof.
+ revert l.
+ induction n; intros [|a l] H; auto; try solve [inversion H].
+ simpl in *. apply IHn. auto with arith.
+ Qed.
+
+ Lemma nth_error_app2 l l' n : length l <= n ->
+ nth_error (l++l') n = nth_error l' (n-length l).
+ Proof.
+ revert l.
+ induction n; intros [|a l] H; auto; try solve [inversion H].
+ simpl in *. apply IHn. auto with arith.
+ Qed.
(*****************)
(** ** Remove *)
@@ -541,19 +630,29 @@ Section Elts.
match l with
| [] => 0
| y :: tl =>
- let n := count_occ tl x in
- if eq_dec y x then S n else n
+ let n := count_occ tl x in
+ if eq_dec y x then S n else n
end.
(** Compatibility of count_occ with operations on list *)
- Theorem count_occ_In (l : list A) (x : A) : In x l <-> count_occ l x > 0.
+ Theorem count_occ_In l x : In x l <-> count_occ l x > 0.
Proof.
induction l as [|y l]; simpl.
- split; [destruct 1 | apply gt_irrefl].
- destruct eq_dec as [->|Hneq]; rewrite IHl; intuition.
Qed.
- Theorem count_occ_inv_nil (l : list A) :
+ Theorem count_occ_not_In l x : ~ In x l <-> count_occ l x = 0.
+ Proof.
+ rewrite count_occ_In. unfold gt. now rewrite Nat.nlt_ge, Nat.le_0_r.
+ Qed.
+
+ Lemma count_occ_nil x : count_occ [] x = 0.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Theorem count_occ_inv_nil l :
(forall x:A, count_occ l x = 0) <-> l = [].
Proof.
split.
@@ -563,27 +662,20 @@ Section Elts.
- now intros ->.
Qed.
- Lemma count_occ_nil : forall (x : A), count_occ [] x = 0.
- Proof.
- intro x; simpl; reflexivity.
- Qed.
-
- Lemma count_occ_cons_eq : forall (l : list A) (x y : A), x = y -> count_occ (x::l) y = S (count_occ l y).
+ Lemma count_occ_cons_eq l x y :
+ x = y -> count_occ (x::l) y = S (count_occ l y).
Proof.
- intros l x y H; simpl.
- destruct (eq_dec x y); [reflexivity | contradiction].
+ intros H. simpl. now destruct (eq_dec x y).
Qed.
- Lemma count_occ_cons_neq : forall (l : list A) (x y : A), x <> y -> count_occ (x::l) y = count_occ l y.
+ Lemma count_occ_cons_neq l x y :
+ x <> y -> count_occ (x::l) y = count_occ l y.
Proof.
- intros l x y H; simpl.
- destruct (eq_dec x y); [contradiction | reflexivity].
+ intros H. simpl. now destruct (eq_dec x y).
Qed.
End Elts.
-
-
(*******************************)
(** * Manipulating whole lists *)
(*******************************)
@@ -739,6 +831,33 @@ Section ListOps.
End Reverse_Induction.
+ (*************************)
+ (** ** Concatenation *)
+ (*************************)
+
+ Fixpoint concat (l : list (list A)) : list A :=
+ match l with
+ | nil => nil
+ | cons x l => x ++ concat l
+ end.
+
+ Lemma concat_nil : concat nil = nil.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma concat_cons : forall x l, concat (cons x l) = x ++ concat l.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma concat_app : forall l1 l2, concat (l1 ++ l2) = concat l1 ++ concat l2.
+ Proof.
+ intros l1; induction l1 as [|x l1 IH]; intros l2; simpl.
+ + reflexivity.
+ + rewrite IH; apply app_assoc.
+ Qed.
+
(***********************************)
(** ** Decidable equality on lists *)
(***********************************)
@@ -759,15 +878,20 @@ End ListOps.
(************)
Section Map.
- Variables A B : Type.
+ Variables (A : Type) (B : Type).
Variable f : A -> B.
Fixpoint map (l:list A) : list B :=
match l with
- | nil => nil
- | cons a t => cons (f a) (map t)
+ | [] => []
+ | a :: t => (f a) :: (map t)
end.
+ Lemma map_cons (x:A)(l:list A) : map (x::l) = (f x) :: (map l).
+ Proof.
+ reflexivity.
+ Qed.
+
Lemma in_map :
forall (l:list A) (x:A), In x l -> In (f x) (map l).
Proof.
@@ -815,6 +939,25 @@ Section Map.
destruct l; simpl; reflexivity || discriminate.
Qed.
+ (** [map] and count of occurrences *)
+
+ Hypothesis decA: forall x1 x2 : A, {x1 = x2} + {x1 <> x2}.
+ Hypothesis decB: forall y1 y2 : B, {y1 = y2} + {y1 <> y2}.
+ Hypothesis Hfinjective: forall x1 x2: A, (f x1) = (f x2) -> x1 = x2.
+
+ Theorem count_occ_map x l:
+ count_occ decA l x = count_occ decB (map l) (f x).
+ Proof.
+ revert x. induction l as [| a l' Hrec]; intro x; simpl.
+ - reflexivity.
+ - specialize (Hrec x).
+ destruct (decA a x) as [H1|H1], (decB (f a) (f x)) as [H2|H2].
+ * rewrite Hrec. reflexivity.
+ * contradiction H2. rewrite H1. reflexivity.
+ * specialize (Hfinjective H2). contradiction H1.
+ * assumption.
+ Qed.
+
(** [flat_map] *)
Definition flat_map (f:A -> list B) :=
@@ -826,7 +969,7 @@ Section Map.
Lemma in_flat_map : forall (f:A->list B)(l:list A)(y:B),
In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
- Proof.
+ Proof using A B.
induction l; simpl; split; intros.
contradiction.
destruct H as (x,(H,_)); contradiction.
@@ -843,6 +986,21 @@ Section Map.
End Map.
+Lemma flat_map_concat_map : forall A B (f : A -> list B) l,
+ flat_map f l = concat (map f l).
+Proof.
+intros A B f l; induction l as [|x l IH]; simpl.
++ reflexivity.
++ rewrite IH; reflexivity.
+Qed.
+
+Lemma concat_map : forall A B (f : A -> B) l, map f (concat l) = concat (map (map f) l).
+Proof.
+intros A B f l; induction l as [|x l IH]; simpl.
++ reflexivity.
++ rewrite map_app, IH; reflexivity.
+Qed.
+
Lemma map_id : forall (A :Type) (l : list A),
map (fun x => x) l = l.
Proof.
@@ -869,7 +1027,7 @@ Qed.
(************************************)
Section Fold_Left_Recursor.
- Variables A B : Type.
+ Variables (A : Type) (B : Type).
Variable f : A -> B -> A.
Fixpoint fold_left (l:list B) (a0:A) : A :=
@@ -893,10 +1051,8 @@ End Fold_Left_Recursor.
Lemma fold_left_length :
forall (A:Type)(l:list A), fold_left (fun x _ => S x) l 0 = length l.
Proof.
- intro A.
- cut (forall (l:list A) n, fold_left (fun x _ => S x) l n = n + length l).
- intros.
- exact (H l 0).
+ intros A l.
+ enough (H : forall n, fold_left (fun x _ => S x) l n = n + length l) by exact (H 0).
induction l; simpl; auto.
intros; rewrite IHl.
simpl; auto with arith.
@@ -907,7 +1063,7 @@ Qed.
(************************************)
Section Fold_Right_Recursor.
- Variables A B : Type.
+ Variables (A : Type) (B : Type).
Variable f : B -> A -> A.
Variable a0 : A.
@@ -939,29 +1095,17 @@ End Fold_Right_Recursor.
Qed.
Theorem fold_symmetric :
- forall (A:Type) (f:A -> A -> A),
- (forall x y z:A, f x (f y z) = f (f x y) z) ->
- (forall x y:A, f x y = f y x) ->
- forall (a0:A) (l:list A), fold_left f l a0 = fold_right f a0 l.
+ forall (A : Type) (f : A -> A -> A),
+ (forall x y z : A, f x (f y z) = f (f x y) z) ->
+ forall (a0 : A), (forall y : A, f a0 y = f y a0) ->
+ forall (l : list A), fold_left f l a0 = fold_right f a0 l.
Proof.
- destruct l as [| a l].
- reflexivity.
- simpl.
- rewrite <- H0.
- generalize a0 a.
- induction l as [| a3 l IHl]; simpl.
- trivial.
- intros.
- rewrite H.
- rewrite (H0 a2).
- rewrite <- (H a1).
- rewrite (H0 a1).
- rewrite IHl.
- reflexivity.
+ intros A f assoc a0 comma0 l.
+ induction l as [ | a1 l ]; [ simpl; reflexivity | ].
+ simpl. rewrite <- IHl. clear IHl. revert a1. induction l; [ auto | ].
+ simpl. intro. rewrite <- assoc. rewrite IHl. rewrite IHl. auto.
Qed.
-
-
(** [(list_power x y)] is [y^x], or the set of sequences of elts of [y]
indexed by elts of [x], sorted in lexicographic order. *)
@@ -1075,6 +1219,21 @@ End Fold_Right_Recursor.
| x :: tl => if f x then Some x else find tl
end.
+ Lemma find_some l x : find l = Some x -> In x l /\ f x = true.
+ Proof.
+ induction l as [|a l IH]; simpl; [easy| ].
+ case_eq (f a); intros Ha Eq.
+ * injection Eq as ->; auto.
+ * destruct (IH Eq); auto.
+ Qed.
+
+ Lemma find_none l : find l = None -> forall x, In x l -> f x = false.
+ Proof.
+ induction l as [|a l IH]; simpl; [easy|].
+ case_eq (f a); intros Ha Eq x IN; [easy|].
+ destruct IN as [<-|IN]; auto.
+ Qed.
+
(** [partition] *)
Fixpoint partition (l:list A) : list A * list A :=
@@ -1084,6 +1243,53 @@ End Fold_Right_Recursor.
if f x then (x::g,d) else (g,x::d)
end.
+ Theorem partition_cons1 a l l1 l2:
+ partition l = (l1, l2) ->
+ f a = true ->
+ partition (a::l) = (a::l1, l2).
+ Proof.
+ simpl. now intros -> ->.
+ Qed.
+
+ Theorem partition_cons2 a l l1 l2:
+ partition l = (l1, l2) ->
+ f a=false ->
+ partition (a::l) = (l1, a::l2).
+ Proof.
+ simpl. now intros -> ->.
+ Qed.
+
+ Theorem partition_length l l1 l2:
+ partition l = (l1, l2) ->
+ length l = length l1 + length l2.
+ Proof.
+ revert l1 l2. induction l as [ | a l' Hrec]; intros l1 l2.
+ - now intros [= <- <- ].
+ - simpl. destruct (f a), (partition l') as (left, right);
+ intros [= <- <- ]; simpl; rewrite (Hrec left right); auto.
+ Qed.
+
+ Theorem partition_inv_nil (l : list A):
+ partition l = ([], []) <-> l = [].
+ Proof.
+ split.
+ - destruct l as [|a l' _].
+ * intuition.
+ * simpl. destruct (f a), (partition l'); now intros [= -> ->].
+ - now intros ->.
+ Qed.
+
+ Theorem elements_in_partition l l1 l2:
+ partition l = (l1, l2) ->
+ forall x:A, In x l <-> In x l1 \/ In x l2.
+ Proof.
+ revert l1 l2. induction l as [| a l' Hrec]; simpl; intros l1 l2 Eq x.
+ - injection Eq as <- <-. tauto.
+ - destruct (partition l') as (left, right).
+ specialize (Hrec left right eq_refl x).
+ destruct (f a); injection Eq as <- <-; simpl; tauto.
+ Qed.
+
End Bool.
@@ -1094,14 +1300,14 @@ End Fold_Right_Recursor.
(******************************************************)
Section ListPairs.
- Variables A B : Type.
+ Variables (A : Type) (B : Type).
(** [split] derives two lists from a list of pairs *)
Fixpoint split (l:list (A*B)) : list A * list B :=
match l with
- | nil => (nil, nil)
- | (x,y) :: tl => let (g,d) := split tl in (x::g, y::d)
+ | [] => ([], [])
+ | (x,y) :: tl => let (left,right) := split tl in (x::left, y::right)
end.
Lemma in_split_l : forall (l:list (A*B))(p:A*B),
@@ -1479,6 +1685,61 @@ Section Cutting.
End Cutting.
+(**********************************************************************)
+(** ** Predicate for List addition/removal (no need for decidability) *)
+(**********************************************************************)
+
+Section Add.
+
+ Variable A : Type.
+
+ (* [Add a l l'] means that [l'] is exactly [l], with [a] added
+ once somewhere *)
+ Inductive Add (a:A) : list A -> list A -> Prop :=
+ | Add_head l : Add a l (a::l)
+ | Add_cons x l l' : Add a l l' -> Add a (x::l) (x::l').
+
+ Lemma Add_app a l1 l2 : Add a (l1++l2) (l1++a::l2).
+ Proof.
+ induction l1; simpl; now constructor.
+ Qed.
+
+ Lemma Add_split a l l' :
+ Add a l l' -> exists l1 l2, l = l1++l2 /\ l' = l1++a::l2.
+ Proof.
+ induction 1.
+ - exists nil; exists l; split; trivial.
+ - destruct IHAdd as (l1 & l2 & Hl & Hl').
+ exists (x::l1); exists l2; split; simpl; f_equal; trivial.
+ Qed.
+
+ Lemma Add_in a l l' : Add a l l' ->
+ forall x, In x l' <-> In x (a::l).
+ Proof.
+ induction 1; intros; simpl in *; rewrite ?IHAdd; tauto.
+ Qed.
+
+ Lemma Add_length a l l' : Add a l l' -> length l' = S (length l).
+ Proof.
+ induction 1; simpl; auto with arith.
+ Qed.
+
+ Lemma Add_inv a l : In a l -> exists l', Add a l' l.
+ Proof.
+ intro Ha. destruct (in_split _ _ Ha) as (l1 & l2 & ->).
+ exists (l1 ++ l2). apply Add_app.
+ Qed.
+
+ Lemma incl_Add_inv a l u v :
+ ~In a l -> incl (a::l) v -> Add a u v -> incl l u.
+ Proof.
+ intros Ha H AD y Hy.
+ assert (Hy' : In y (a::u)).
+ { rewrite <- (Add_in AD). apply H; simpl; auto. }
+ destruct Hy'; [ subst; now elim Ha | trivial ].
+ Qed.
+
+End Add.
(********************************)
(** ** Lists without redundancy *)
@@ -1492,31 +1753,187 @@ Section ReDun.
| NoDup_nil : NoDup nil
| NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
- Lemma NoDup_remove_1 : forall l l' a, NoDup (l++a::l') -> NoDup (l++l').
+ Lemma NoDup_Add a l l' : Add a l l' -> (NoDup l' <-> NoDup l /\ ~In a l).
Proof.
- induction l; simpl.
- inversion_clear 1; auto.
- inversion_clear 1.
- constructor.
- contradict H0.
- apply in_or_app; destruct (in_app_or _ _ _ H0); simpl; tauto.
- apply IHl with a0; auto.
+ induction 1 as [l|x l l' AD IH].
+ - split; [ inversion_clear 1; now split | now constructor ].
+ - split.
+ + inversion_clear 1. rewrite IH in *. rewrite (Add_in AD) in *.
+ simpl in *; split; try constructor; intuition.
+ + intros (N,IN). inversion_clear N. constructor.
+ * rewrite (Add_in AD); simpl in *; intuition.
+ * apply IH. split; trivial. simpl in *; intuition.
Qed.
- Lemma NoDup_remove_2 : forall l l' a, NoDup (l++a::l') -> ~In a (l++l').
+ Lemma NoDup_remove l l' a :
+ NoDup (l++a::l') -> NoDup (l++l') /\ ~In a (l++l').
Proof.
- induction l; simpl.
- inversion_clear 1; auto.
- inversion_clear 1.
- contradict H0.
- destruct H0.
- subst a0.
- apply in_or_app; right; red; auto.
- destruct (IHl _ _ H1); auto.
+ apply NoDup_Add. apply Add_app.
+ Qed.
+
+ Lemma NoDup_remove_1 l l' a : NoDup (l++a::l') -> NoDup (l++l').
+ Proof.
+ intros. now apply NoDup_remove with a.
+ Qed.
+
+ Lemma NoDup_remove_2 l l' a : NoDup (l++a::l') -> ~In a (l++l').
+ Proof.
+ intros. now apply NoDup_remove.
+ Qed.
+
+ Theorem NoDup_cons_iff a l:
+ NoDup (a::l) <-> ~ In a l /\ NoDup l.
+ Proof.
+ split.
+ + inversion_clear 1. now split.
+ + now constructor.
+ Qed.
+
+ (** Effective computation of a list without duplicates *)
+
+ Hypothesis decA: forall x y : A, {x = y} + {x <> y}.
+
+ Fixpoint nodup (l : list A) : list A :=
+ match l with
+ | [] => []
+ | x::xs => if in_dec decA x xs then nodup xs else x::(nodup xs)
+ end.
+
+ Lemma nodup_In l x : In x (nodup l) <-> In x l.
+ Proof.
+ induction l as [|a l' Hrec]; simpl.
+ - reflexivity.
+ - destruct (in_dec decA a l'); simpl; rewrite Hrec.
+ * intuition; now subst.
+ * reflexivity.
+ Qed.
+
+ Lemma NoDup_nodup l: NoDup (nodup l).
+ Proof.
+ induction l as [|a l' Hrec]; simpl.
+ - constructor.
+ - destruct (in_dec decA a l'); simpl.
+ * assumption.
+ * constructor; [ now rewrite nodup_In | assumption].
+ Qed.
+
+ Lemma nodup_inv k l a : nodup k = a :: l -> ~ In a l.
+ Proof.
+ intros H.
+ assert (H' : NoDup (a::l)).
+ { rewrite <- H. apply NoDup_nodup. }
+ now inversion_clear H'.
+ Qed.
+
+ Theorem NoDup_count_occ l:
+ NoDup l <-> (forall x:A, count_occ decA l x <= 1).
+ Proof.
+ induction l as [| a l' Hrec].
+ - simpl; split; auto. constructor.
+ - rewrite NoDup_cons_iff, Hrec, (count_occ_not_In decA). clear Hrec. split.
+ + intros (Ha, H) x. simpl. destruct (decA a x); auto.
+ subst; now rewrite Ha.
+ + split.
+ * specialize (H a). rewrite count_occ_cons_eq in H; trivial.
+ now inversion H.
+ * intros x. specialize (H x). simpl in *. destruct (decA a x); auto.
+ now apply Nat.lt_le_incl.
+ Qed.
+
+ Theorem NoDup_count_occ' l:
+ NoDup l <-> (forall x:A, In x l -> count_occ decA l x = 1).
+ Proof.
+ rewrite NoDup_count_occ.
+ setoid_rewrite (count_occ_In decA). unfold gt, lt in *.
+ split; intros H x; specialize (H x);
+ set (n := count_occ decA l x) in *; clearbody n.
+ (* the rest would be solved by omega if we had it here... *)
+ - now apply Nat.le_antisymm.
+ - destruct (Nat.le_gt_cases 1 n); trivial.
+ + rewrite H; trivial.
+ + now apply Nat.lt_le_incl.
+ Qed.
+
+ (** Alternative characterisations of being without duplicates,
+ thanks to [nth_error] and [nth] *)
+
+ Lemma NoDup_nth_error l :
+ NoDup l <->
+ (forall i j, i<length l -> nth_error l i = nth_error l j -> i = j).
+ Proof.
+ split.
+ { intros H; induction H as [|a l Hal Hl IH]; intros i j Hi E.
+ - inversion Hi.
+ - destruct i, j; simpl in *; auto.
+ * elim Hal. eapply nth_error_In; eauto.
+ * elim Hal. eapply nth_error_In; eauto.
+ * f_equal. apply IH; auto with arith. }
+ { induction l as [|a l]; intros H; constructor.
+ * intro Ha. apply In_nth_error in Ha. destruct Ha as (n,Hn).
+ assert (n < length l) by (now rewrite <- nth_error_Some, Hn).
+ specialize (H 0 (S n)). simpl in H. discriminate H; auto with arith.
+ * apply IHl.
+ intros i j Hi E. apply eq_add_S, H; simpl; auto with arith. }
+ Qed.
+
+ Lemma NoDup_nth l d :
+ NoDup l <->
+ (forall i j, i<length l -> j<length l ->
+ nth i l d = nth j l d -> i = j).
+ Proof.
+ split.
+ { intros H; induction H as [|a l Hal Hl IH]; intros i j Hi Hj E.
+ - inversion Hi.
+ - destruct i, j; simpl in *; auto.
+ * elim Hal. subst a. apply nth_In; auto with arith.
+ * elim Hal. subst a. apply nth_In; auto with arith.
+ * f_equal. apply IH; auto with arith. }
+ { induction l as [|a l]; intros H; constructor.
+ * intro Ha. eapply In_nth in Ha. destruct Ha as (n & Hn & Hn').
+ specialize (H 0 (S n)). simpl in H. discriminate H; eauto with arith.
+ * apply IHl.
+ intros i j Hi Hj E. apply eq_add_S, H; simpl; auto with arith. }
+ Qed.
+
+ (** Having [NoDup] hypotheses bring more precise facts about [incl]. *)
+
+ Lemma NoDup_incl_length l l' :
+ NoDup l -> incl l l' -> length l <= length l'.
+ Proof.
+ intros N. revert l'. induction N as [|a l Hal N IH]; simpl.
+ - auto with arith.
+ - intros l' H.
+ destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
+ rewrite (Add_length AD). apply le_n_S. apply IH.
+ now apply incl_Add_inv with a l'.
+ Qed.
+
+ Lemma NoDup_length_incl l l' :
+ NoDup l -> length l' <= length l -> incl l l' -> incl l' l.
+ Proof.
+ intros N. revert l'. induction N as [|a l Hal N IH].
+ - destruct l'; easy.
+ - intros l' E H x Hx.
+ destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
+ rewrite (Add_in AD) in Hx. simpl in Hx.
+ destruct Hx as [Hx|Hx]; [left; trivial|right].
+ revert x Hx. apply (IH l''); trivial.
+ * apply le_S_n. now rewrite <- (Add_length AD).
+ * now apply incl_Add_inv with a l'.
Qed.
End ReDun.
+(** NoDup and map *)
+
+(** NB: the reciprocal result holds only for injective functions,
+ see FinFun.v *)
+
+Lemma NoDup_map_inv A B (f:A->B) l : NoDup (map f l) -> NoDup l.
+Proof.
+ induction l; simpl; inversion_clear 1; subst; constructor; auto.
+ intro H. now apply (in_map f) in H.
+Qed.
(***********************************)
(** ** Sequence of natural numbers *)
@@ -1558,149 +1975,252 @@ Section NatSeq.
auto with arith.
Qed.
+ Lemma in_seq len start n :
+ In n (seq start len) <-> start <= n < start+len.
+ Proof.
+ revert start. induction len; simpl; intros.
+ - rewrite <- plus_n_O. split;[easy|].
+ intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')).
+ - rewrite IHlen, <- plus_n_Sm; simpl; split.
+ * intros [H|H]; subst; intuition auto with arith.
+ * intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H); intuition.
+ Qed.
+
+ Lemma seq_NoDup len start : NoDup (seq start len).
+ Proof.
+ revert start; induction len; simpl; constructor; trivial.
+ rewrite in_seq. intros (H,_). apply (Lt.lt_irrefl _ H).
+ Qed.
+
End NatSeq.
+Section Exists_Forall.
-(** * Existential and universal predicates over lists *)
+ (** * Existential and universal predicates over lists *)
-Inductive Exists {A} (P:A->Prop) : list A -> Prop :=
- | Exists_cons_hd : forall x l, P x -> Exists P (x::l)
- | Exists_cons_tl : forall x l, Exists P l -> Exists P (x::l).
-Hint Constructors Exists.
+ Variable A:Type.
-Lemma Exists_exists : forall A P (l:list A),
- Exists P l <-> (exists x, In x l /\ P x).
-Proof.
-split.
-induction 1; firstorder.
-induction l; firstorder; subst; auto.
-Qed.
+ Section One_predicate.
+
+ Variable P:A->Prop.
+
+ Inductive Exists : list A -> Prop :=
+ | Exists_cons_hd : forall x l, P x -> Exists (x::l)
+ | Exists_cons_tl : forall x l, Exists l -> Exists (x::l).
-Lemma Exists_nil : forall A (P:A->Prop), Exists P nil <-> False.
-Proof. split; inversion 1. Qed.
+ Hint Constructors Exists.
-Lemma Exists_cons : forall A (P:A->Prop) x l,
- Exists P (x::l) <-> P x \/ Exists P l.
-Proof. split; inversion 1; auto. Qed.
+ Lemma Exists_exists (l:list A) :
+ Exists l <-> (exists x, In x l /\ P x).
+ Proof.
+ split.
+ - induction 1; firstorder.
+ - induction l; firstorder; subst; auto.
+ Qed.
+ Lemma Exists_nil : Exists nil <-> False.
+ Proof. split; inversion 1. Qed.
+
+ Lemma Exists_cons x l:
+ Exists (x::l) <-> P x \/ Exists l.
+ Proof. split; inversion 1; auto. Qed.
+
+ Lemma Exists_dec l:
+ (forall x:A, {P x} + { ~ P x }) ->
+ {Exists l} + {~ Exists l}.
+ Proof.
+ intro Pdec. induction l as [|a l' Hrec].
+ - right. now rewrite Exists_nil.
+ - destruct Hrec as [Hl'|Hl'].
+ * left. now apply Exists_cons_tl.
+ * destruct (Pdec a) as [Ha|Ha].
+ + left. now apply Exists_cons_hd.
+ + right. now inversion_clear 1.
+ Qed.
-Inductive Forall {A} (P:A->Prop) : list A -> Prop :=
- | Forall_nil : Forall P nil
- | Forall_cons : forall x l, P x -> Forall P l -> Forall P (x::l).
+ Inductive Forall : list A -> Prop :=
+ | Forall_nil : Forall nil
+ | Forall_cons : forall x l, P x -> Forall l -> Forall (x::l).
+
+ Hint Constructors Forall.
+
+ Lemma Forall_forall (l:list A):
+ Forall l <-> (forall x, In x l -> P x).
+ Proof.
+ split.
+ - induction 1; firstorder; subst; auto.
+ - induction l; firstorder.
+ Qed.
+
+ Lemma Forall_inv : forall (a:A) l, Forall (a :: l) -> P a.
+ Proof.
+ intros; inversion H; trivial.
+ Qed.
+
+ Lemma Forall_rect : forall (Q : list A -> Type),
+ Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall l -> Q l.
+ Proof.
+ intros Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption.
+ Qed.
+
+ Lemma Forall_dec :
+ (forall x:A, {P x} + { ~ P x }) ->
+ forall l:list A, {Forall l} + {~ Forall l}.
+ Proof.
+ intro Pdec. induction l as [|a l' Hrec].
+ - left. apply Forall_nil.
+ - destruct Hrec as [Hl'|Hl'].
+ + destruct (Pdec a) as [Ha|Ha].
+ * left. now apply Forall_cons.
+ * right. now inversion_clear 1.
+ + right. now inversion_clear 1.
+ Qed.
+
+ End One_predicate.
+
+ Lemma Forall_Exists_neg (P:A->Prop)(l:list A) :
+ Forall (fun x => ~ P x) l <-> ~(Exists P l).
+ Proof.
+ rewrite Forall_forall, Exists_exists. firstorder.
+ Qed.
+
+ Lemma Exists_Forall_neg (P:A->Prop)(l:list A) :
+ (forall x, P x \/ ~P x) ->
+ Exists (fun x => ~ P x) l <-> ~(Forall P l).
+ Proof.
+ intro Dec.
+ split.
+ - rewrite Forall_forall, Exists_exists; firstorder.
+ - intros NF.
+ induction l as [|a l IH].
+ + destruct NF. constructor.
+ + destruct (Dec a) as [Ha|Ha].
+ * apply Exists_cons_tl, IH. contradict NF. now constructor.
+ * now apply Exists_cons_hd.
+ Qed.
+
+ Lemma Forall_Exists_dec (P:A->Prop) :
+ (forall x:A, {P x} + { ~ P x }) ->
+ forall l:list A,
+ {Forall P l} + {Exists (fun x => ~ P x) l}.
+ Proof.
+ intros Pdec l.
+ destruct (Forall_dec P Pdec l); [left|right]; trivial.
+ apply Exists_Forall_neg; trivial.
+ intro x. destruct (Pdec x); [now left|now right].
+ Qed.
+
+ Lemma Forall_impl : forall (P Q : A -> Prop), (forall a, P a -> Q a) ->
+ forall l, Forall P l -> Forall Q l.
+ Proof.
+ intros P Q H l. rewrite !Forall_forall. firstorder.
+ Qed.
+
+End Exists_Forall.
+
+Hint Constructors Exists.
Hint Constructors Forall.
-Lemma Forall_forall : forall A P (l:list A),
- Forall P l <-> (forall x, In x l -> P x).
-Proof.
-split.
-induction 1; firstorder; subst; auto.
-induction l; firstorder.
-Qed.
+Section Forall2.
-Lemma Forall_inv : forall A P (a:A) l, Forall P (a :: l) -> P a.
-Proof.
-intros; inversion H; trivial.
-Defined.
+ (** [Forall2]: stating that elements of two lists are pairwise related. *)
-Lemma Forall_rect : forall A (P:A->Prop) (Q : list A -> Type),
- Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall P l -> Q l.
-Proof.
-intros A P Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption.
-Defined.
+ Variables A B : Type.
+ Variable R : A -> B -> Prop.
-Lemma Forall_impl : forall A (P Q : A -> Prop), (forall a, P a -> Q a) ->
- forall l, Forall P l -> Forall Q l.
-Proof.
- intros A P Q Himp l H.
- induction H; firstorder.
-Qed.
+ Inductive Forall2 : list A -> list B -> Prop :=
+ | Forall2_nil : Forall2 [] []
+ | Forall2_cons : forall x y l l',
+ R x y -> Forall2 l l' -> Forall2 (x::l) (y::l').
-(** [Forall2]: stating that elements of two lists are pairwise related. *)
+ Hint Constructors Forall2.
-Inductive Forall2 A B (R:A->B->Prop) : list A -> list B -> Prop :=
- | Forall2_nil : Forall2 R [] []
- | Forall2_cons : forall x y l l',
- R x y -> Forall2 R l l' -> Forall2 R (x::l) (y::l').
-Hint Constructors Forall2.
+ Theorem Forall2_refl : Forall2 [] [].
+ Proof. intros; apply Forall2_nil. Qed.
+
+ Theorem Forall2_app_inv_l : forall l1 l2 l',
+ Forall2 (l1 ++ l2) l' ->
+ exists l1' l2', Forall2 l1 l1' /\ Forall2 l2 l2' /\ l' = l1' ++ l2'.
+ Proof.
+ induction l1; intros.
+ exists [], l'; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->).
+ exists (y::l1'), l2'; simpl; auto.
+ Qed.
-Theorem Forall2_refl : forall A B (R:A->B->Prop), Forall2 R [] [].
-Proof. exact Forall2_nil. Qed.
+ Theorem Forall2_app_inv_r : forall l1' l2' l,
+ Forall2 l (l1' ++ l2') ->
+ exists l1 l2, Forall2 l1 l1' /\ Forall2 l2 l2' /\ l = l1 ++ l2.
+ Proof.
+ induction l1'; intros.
+ exists [], l; auto.
+ simpl in H; inversion H; subst; clear H.
+ apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->).
+ exists (x::l1), l2; simpl; auto.
+ Qed.
-Theorem Forall2_app_inv_l : forall A B (R:A->B->Prop) l1 l2 l',
- Forall2 R (l1 ++ l2) l' ->
- exists l1' l2', Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l' = l1' ++ l2'.
-Proof.
- induction l1; intros.
- exists [], l'; auto.
- simpl in H; inversion H; subst; clear H.
- apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->).
- exists (y::l1'), l2'; simpl; auto.
-Qed.
+ Theorem Forall2_app : forall l1 l2 l1' l2',
+ Forall2 l1 l1' -> Forall2 l2 l2' -> Forall2 (l1 ++ l2) (l1' ++ l2').
+ Proof.
+ intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto.
+ Qed.
+End Forall2.
-Theorem Forall2_app_inv_r : forall A B (R:A->B->Prop) l1' l2' l,
- Forall2 R l (l1' ++ l2') ->
- exists l1 l2, Forall2 R l1 l1' /\ Forall2 R l2 l2' /\ l = l1 ++ l2.
-Proof.
- induction l1'; intros.
- exists [], l; auto.
- simpl in H; inversion H; subst; clear H.
- apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->).
- exists (x::l1), l2; simpl; auto.
-Qed.
+Hint Constructors Forall2.
-Theorem Forall2_app : forall A B (R:A->B->Prop) l1 l2 l1' l2',
- Forall2 R l1 l1' -> Forall2 R l2 l2' -> Forall2 R (l1 ++ l2) (l1' ++ l2').
-Proof.
- intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto.
-Qed.
+Section ForallPairs.
-(** [ForallPairs] : specifies that a certain relation should
+ (** [ForallPairs] : specifies that a certain relation should
always hold when inspecting all possible pairs of elements of a list. *)
-Definition ForallPairs A (R : A -> A -> Prop) l :=
- forall a b, In a l -> In b l -> R a b.
+ Variable A : Type.
+ Variable R : A -> A -> Prop.
-(** [ForallOrdPairs] : we still check a relation over all pairs
+ Definition ForallPairs l :=
+ forall a b, In a l -> In b l -> R a b.
+
+ (** [ForallOrdPairs] : we still check a relation over all pairs
of elements of a list, but now the order of elements matters. *)
-Inductive ForallOrdPairs A (R : A -> A -> Prop) : list A -> Prop :=
- | FOP_nil : ForallOrdPairs R nil
- | FOP_cons : forall a l,
- Forall (R a) l -> ForallOrdPairs R l -> ForallOrdPairs R (a::l).
-Hint Constructors ForallOrdPairs.
+ Inductive ForallOrdPairs : list A -> Prop :=
+ | FOP_nil : ForallOrdPairs nil
+ | FOP_cons : forall a l,
+ Forall (R a) l -> ForallOrdPairs l -> ForallOrdPairs (a::l).
-Lemma ForallOrdPairs_In : forall A (R:A->A->Prop) l,
- ForallOrdPairs R l ->
- forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x.
-Proof.
- induction 1.
- inversion 1.
- simpl; destruct 1; destruct 1; repeat subst; auto.
- right; left. apply -> Forall_forall; eauto.
- right; right. apply -> Forall_forall; eauto.
-Qed.
+ Hint Constructors ForallOrdPairs.
+ Lemma ForallOrdPairs_In : forall l,
+ ForallOrdPairs l ->
+ forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x.
+ Proof.
+ induction 1.
+ inversion 1.
+ simpl; destruct 1; destruct 1; repeat subst; auto.
+ right; left. apply -> Forall_forall; eauto.
+ right; right. apply -> Forall_forall; eauto.
+ Qed.
-(** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true
+ (** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true
only when [R] is symmetric and reflexive. *)
-Lemma ForallPairs_ForallOrdPairs : forall A (R:A->A->Prop) l,
- ForallPairs R l -> ForallOrdPairs R l.
-Proof.
- induction l; auto. intros H.
- constructor.
- apply <- Forall_forall. intros; apply H; simpl; auto.
- apply IHl. red; intros; apply H; simpl; auto.
-Qed.
+ Lemma ForallPairs_ForallOrdPairs l: ForallPairs l -> ForallOrdPairs l.
+ Proof.
+ induction l; auto. intros H.
+ constructor.
+ apply <- Forall_forall. intros; apply H; simpl; auto.
+ apply IHl. red; intros; apply H; simpl; auto.
+ Qed.
-Lemma ForallOrdPairs_ForallPairs : forall A (R:A->A->Prop),
- (forall x, R x x) ->
- (forall x y, R x y -> R y x) ->
- forall l, ForallOrdPairs R l -> ForallPairs R l.
-Proof.
- intros A R Refl Sym l Hl x y Hx Hy.
- destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition.
-Qed.
+ Lemma ForallOrdPairs_ForallPairs :
+ (forall x, R x x) ->
+ (forall x y, R x y -> R y x) ->
+ forall l, ForallOrdPairs l -> ForallPairs l.
+ Proof.
+ intros Refl Sym l Hl x y Hx Hy.
+ destruct (ForallOrdPairs_In Hl _ _ Hx Hy); subst; intuition.
+ Qed.
+End ForallPairs.
(** * Inversion of predicates over lists based on head symbol *)
@@ -1767,3 +2287,28 @@ Notation AllS := Forall (only parsing). (* was formerly in TheoryList *)
Hint Resolve app_nil_end : datatypes v62.
(* end hide *)
+
+Section Repeat.
+
+ Variable A : Type.
+ Fixpoint repeat (x : A) (n: nat ) :=
+ match n with
+ | O => []
+ | S k => x::(repeat x k)
+ end.
+
+ Theorem repeat_length x n:
+ length (repeat x n) = n.
+ Proof.
+ induction n as [| k Hrec]; simpl; rewrite ?Hrec; reflexivity.
+ Qed.
+
+ Theorem repeat_spec n x y:
+ In y (repeat x n) -> y=x.
+ Proof.
+ induction n as [|k Hrec]; simpl; destruct 1; auto.
+ Qed.
+
+End Repeat.
+
+(* Unset Universe Polymorphism. *)