summaryrefslogtreecommitdiff
path: root/theories/IntMap/Lsort.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/IntMap/Lsort.v')
-rw-r--r--theories/IntMap/Lsort.v413
1 files changed, 0 insertions, 413 deletions
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v
deleted file mode 100644
index c8d793a1..00000000
--- a/theories/IntMap/Lsort.v
+++ /dev/null
@@ -1,413 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Lsort.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import List.
-Require Import Mapiter.
-
-Section LSort.
-
- Variable A : Set.
-
- Fixpoint alist_sorted (l:alist A) : bool :=
- match l with
- | nil => true
- | (a, _) :: l' =>
- match l' with
- | nil => true
- | (a', y') :: l'' => andb (Nless a a') (alist_sorted l')
- end
- end.
-
- Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad :=
- match l with
- | nil => N0 (* dummy *)
- | (a, y) :: l' => match n with
- | O => a
- | S n' => alist_nth_ad n' l'
- end
- end.
-
- Definition alist_sorted_1 (l:alist A) :=
- forall n:nat,
- S (S n) <= length l ->
- Nless (alist_nth_ad n l) (alist_nth_ad (S n) l) = true.
-
- Lemma alist_sorted_imp_1 :
- forall l:alist A, alist_sorted l = true -> alist_sorted_1 l.
- Proof.
- unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0).
- intro r. elim r. intros a y. simple induction l0. intros. simpl in H1.
- elim (le_Sn_O n (le_S_n (S n) 0 H1)).
- intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1.
- exact (proj1 (andb_prop _ _ H1)).
- intros. change
- (Nless (alist_nth_ad n0 ((a0, y0) :: l1))
- (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true)
- in |- *.
- apply H0. exact (proj2 (andb_prop _ _ H1)).
- apply le_S_n. exact H3.
- Qed.
-
- Definition alist_sorted_2 (l:alist A) :=
- forall m n:nat,
- m < n ->
- S n <= length l -> Nless (alist_nth_ad m l) (alist_nth_ad n l) = true.
-
- Lemma alist_sorted_1_imp_2 :
- forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l.
- Proof.
- unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m).
- intros. apply Nless_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le.
- assumption.
- apply H. assumption.
- Qed.
-
- Lemma alist_sorted_2_imp :
- forall l:alist A, alist_sorted_2 l -> alist_sorted l = true.
- Proof.
- unfold alist_sorted_2, lt in |- *. simple induction l. trivial.
- intro r. elim r. intros a y. simple induction l0. trivial.
- intro r0. elim r0. intros a0 y0. intros.
- change (andb (Nless a a0) (alist_sorted ((a0, y0) :: l1)) = true)
- in |- *.
- apply andb_true_intro. split. apply (H1 0 1). apply le_n.
- simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
- apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption.
- exact (le_n_S _ _ H3).
- Qed.
-
- Lemma app_length :
- forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (H l'). reflexivity.
- Qed.
-
- Lemma aapp_length :
- forall l l':alist A, length (aapp A l l') = length l + length l'.
- Proof.
- exact (app_length (ad * A)).
- Qed.
-
- Lemma alist_nth_ad_aapp_1 :
- forall (l l':alist A) (n:nat),
- S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l.
- Proof.
- simple induction l. intros. elim (le_Sn_O n H).
- intro r. elim r. intros a y l' H l''. simple induction n. trivial.
- intros. simpl in |- *. apply H. apply le_S_n. exact H1.
- Qed.
-
- Lemma alist_nth_ad_aapp_2 :
- forall (l l':alist A) (n:nat),
- S n <= length l' ->
- alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'.
- Proof.
- simple induction l. trivial.
- intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0.
- Qed.
-
- Lemma interval_split :
- forall p q n:nat,
- S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}.
- Proof.
- simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ].
- intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n.
- intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3.
- elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ].
- intro H2. right. apply le_n_S. assumption.
- Qed.
-
- Lemma alist_conc_sorted :
- forall l l':alist A,
- alist_sorted_2 l ->
- alist_sorted_2 l' ->
- (forall n n':nat,
- S n <= length l ->
- S n' <= length l' ->
- Nless (alist_nth_ad n l) (alist_nth_ad n' l') = true) ->
- alist_sorted_2 (aapp A l l').
- Proof.
- unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3.
- elim
- (interval_split (length l) (length l') m
- (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)).
- intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7.
- rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3).
- intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11.
- rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2.
- change (S (length l) + m' <= length l + n') in H2.
- rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2).
- exact H10.
- intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9).
- apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')).
- apply le_trans with (m := length l + m'). apply le_plus_l.
- apply le_n_Sn.
- exact H2.
- exact H8.
- intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4).
- elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6.
- intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7).
- intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5).
- Qed.
-
- Lemma alist_nth_ad_semantics :
- forall (l:alist A) (n:nat),
- S n <= length l ->
- {y : A | alist_semantics A l (alist_nth_ad n l) = Some y}.
- Proof.
- simple induction l. intros. elim (le_Sn_O _ H).
- intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y.
- rewrite (Neqb_correct a). reflexivity.
- intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2.
- elim (sumbool_of_bool (Neqb a (alist_nth_ad n0 l0))). intro H3. split with y.
- rewrite (Neqb_complete _ _ H3). simpl in |- *. rewrite (Neqb_correct (alist_nth_ad n0 l0)).
- reflexivity.
- intro H3. split with y0. simpl in |- *. rewrite H3. assumption.
- Qed.
-
- Lemma alist_of_Map_nth_ad :
- forall (m:Map A) (pf:ad -> ad) (l:alist A),
- l =
- MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m ->
- forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}.
- Proof.
- intros. elim (alist_nth_ad_semantics l n H0). intros y H1.
- apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
- rewrite <- H. assumption.
- Qed.
-
- Definition ad_monotonic (pf:ad -> ad) :=
- forall a a':ad, Nless a a' = true -> Nless (pf a) (pf a') = true.
-
- Lemma Ndouble_monotonic : ad_monotonic Ndouble.
- Proof.
- unfold ad_monotonic in |- *. intros. rewrite Nless_def_1. assumption.
- Qed.
-
- Lemma Ndouble_plus_one_monotonic : ad_monotonic Ndouble_plus_one.
- Proof.
- unfold ad_monotonic in |- *. intros. rewrite Nless_def_2. assumption.
- Qed.
-
- Lemma ad_comp_monotonic :
- forall pf pf':ad -> ad,
- ad_monotonic pf ->
- ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)).
- Proof.
- unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1.
- Qed.
-
- Lemma ad_comp_double_monotonic :
- forall pf:ad -> ad,
- ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (Ndouble a0)).
- Proof.
- intros. apply ad_comp_monotonic. assumption.
- exact Ndouble_monotonic.
- Qed.
-
- Lemma ad_comp_double_plus_un_monotonic :
- forall pf:ad -> ad,
- ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (Ndouble_plus_one a0)).
- Proof.
- intros. apply ad_comp_monotonic. assumption.
- exact Ndouble_plus_one_monotonic.
- Qed.
-
- Lemma alist_of_Map_sorts_1 :
- forall (m:Map A) (pf:ad -> ad),
- ad_monotonic pf ->
- alist_sorted_2
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m).
- Proof.
- simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
- intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
- intros. simpl in |- *. apply alist_conc_sorted.
- exact
- (H (fun a0:ad => pf (Ndouble a0)) (ad_comp_double_monotonic pf H1)).
- exact
- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))
- (ad_comp_double_plus_un_monotonic pf H1)).
- intros. elim
- (alist_of_Map_nth_ad m0 (fun a0:ad => pf (Ndouble a0))
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
- (fun a0:ad => pf (Ndouble a0)) m0) (refl_equal _) n H2).
- intros a H4. rewrite H4. elim
- (alist_of_Map_nth_ad m1 (fun a0:ad => pf (Ndouble_plus_one a0))
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1) (
- refl_equal _) n' H3).
- intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply Nless_def_3.
- Qed.
-
- Lemma alist_of_Map_sorts :
- forall m:Map A, alist_sorted (alist_of_Map A m) = true.
- Proof.
- intro. apply alist_sorted_2_imp.
- exact
- (alist_of_Map_sorts_1 m (fun a0:ad => a0)
- (fun (a a':ad) (p:Nless a a' = true) => p)).
- Qed.
-
- Lemma alist_of_Map_sorts1 :
- forall m:Map A, alist_sorted_1 (alist_of_Map A m).
- Proof.
- intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts.
- Qed.
-
- Lemma alist_of_Map_sorts2 :
- forall m:Map A, alist_sorted_2 (alist_of_Map A m).
- Proof.
- intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1.
- Qed.
-
- Lemma alist_too_low :
- forall (l:alist A) (a a':ad) (y:A),
- Nless a a' = true ->
- alist_sorted_2 ((a', y) :: l) ->
- alist_semantics A ((a', y) :: l) a = None.
- Proof.
- simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (Neqb a' a)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (Nless_not_refl a) in H. discriminate H.
- intro H1. rewrite H1. reflexivity.
- intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1.
- change
- (match Neqb a1 a0 with
- | true => Some y0
- | false => alist_semantics A ((a, y) :: l0) a0
- end = None) in |- *.
- elim (sumbool_of_bool (Neqb a1 a0)). intro H2. rewrite (Neqb_complete _ _ H2) in H0.
- rewrite (Nless_not_refl a0) in H0. discriminate H0.
- intro H2. rewrite H2. apply H. apply Nless_trans with (a' := a1). assumption.
- unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn.
- simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
- apply alist_sorted_1_imp_2. apply alist_sorted_imp_1.
- cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3.
- exact (proj2 (andb_prop _ _ H3)).
- apply alist_sorted_2_imp. assumption.
- Qed.
-
- Lemma alist_semantics_nth_ad :
- forall (l:alist A) (a:ad) (y:A),
- alist_semantics A l a = Some y ->
- {n : nat | S n <= length l /\ alist_nth_ad n l = a}.
- Proof.
- simple induction l. intros. discriminate H.
- intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (Neqb a a0)).
- intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n.
- simpl in |- *. exact (Neqb_complete _ _ H1).
- intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split.
- simpl in |- *. apply le_n_S. exact (proj1 H2).
- exact (proj2 H2).
- Qed.
-
- Lemma alist_semantics_tail :
- forall (l:alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) ->
- eqm A (alist_semantics A l)
- (fun a0:ad =>
- if Neqb a a0 then None else alist_semantics A ((a, y) :: l) a0).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete _ _ H0). unfold alist_sorted_2 in H.
- elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2.
- elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros.
- cut
- (Nless (alist_nth_ad 0 ((a, y) :: l))
- (alist_nth_ad (S n) ((a, y) :: l)) = true).
- intro. simpl in H6. rewrite H5 in H6. rewrite (Nless_not_refl a) in H6. discriminate H6.
- apply H. apply lt_O_Sn.
- simpl in |- *. apply le_n_S. assumption.
- trivial.
- intro H0. simpl in |- *. rewrite H0. reflexivity.
- Qed.
-
- Lemma alist_semantics_same_tail :
- forall (l l':alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) ->
- alist_sorted_2 ((a, y) :: l') ->
- eqm A (alist_semantics A ((a, y) :: l))
- (alist_semantics A ((a, y) :: l')) ->
- eqm A (alist_semantics A l) (alist_semantics A l').
- Proof.
- unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0).
- rewrite (alist_semantics_tail _ _ _ H0 a0). case (Neqb a a0). reflexivity.
- exact (H1 a0).
- Qed.
-
- Lemma alist_sorted_tail :
- forall (l:alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l.
- Proof.
- unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption.
- simpl in |- *. apply le_n_S. assumption.
- Qed.
-
- Lemma alist_canonical :
- forall l l':alist A,
- eqm A (alist_semantics A l) (alist_semantics A l') ->
- alist_sorted_2 l -> alist_sorted_2 l' -> l = l'.
- Proof.
- unfold eqm in |- *. simple induction l. simple induction l'. trivial.
- intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0.
- cut
- (None =
- match Neqb a a with
- | true => Some y
- | false => alist_semantics A l0 a
- end).
- rewrite (Neqb_correct a). intro. discriminate H3.
- exact (H0 a).
- intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0.
- cut
- (match Neqb a a with
- | true => Some y
- | false => alist_semantics A l0 a
- end = None).
- rewrite (Neqb_correct a). intro. discriminate H3.
- exact (H0 a).
- intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (Nless_total a a'). intro H4.
- elim H4. intro H5.
- cut
- (alist_semantics A ((a, y) :: l0) a =
- alist_semantics A ((a', y') :: l'0) a).
- intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6.
- rewrite (Neqb_correct a) in H6. discriminate H6.
- exact (H1 a).
- intro H5. cut
- (alist_semantics A ((a, y) :: l0) a' =
- alist_semantics A ((a', y') :: l'0) a').
- intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6.
- rewrite (Neqb_correct a') in H6. discriminate H6.
- exact (H1 a').
- intro H4. rewrite H4.
- cut
- (alist_semantics A ((a, y) :: l0) a =
- alist_semantics A ((a', y') :: l'0) a).
- intro. simpl in H5. rewrite H4 in H5. rewrite (Neqb_correct a') in H5. inversion H5.
- rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity.
- apply H. rewrite H4 in H2. rewrite H7 in H2.
- exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
- exact (alist_sorted_tail _ _ _ H2).
- exact (alist_sorted_tail _ _ _ H3).
- exact (H1 a).
- Qed.
-
-End LSort. \ No newline at end of file