summaryrefslogtreecommitdiff
path: root/theories/Init/Wf.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Wf.v')
-rw-r--r--theories/Init/Wf.v69
1 files changed, 31 insertions, 38 deletions
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
index 4e0f3745..f46b2b11 100644
--- a/theories/Init/Wf.v
+++ b/theories/Init/Wf.v
@@ -6,12 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Wf.v 8988 2006-06-25 22:15:32Z letouzey $ i*)
+(*i $Id: Wf.v 10712 2008-03-23 11:38:38Z herbelin $ i*)
-(** This module proves the validity of
- - well-founded recursion (also called course of values)
+(** * This module proves the validity of
+ - well-founded recursion (also known as course of values)
- well-founded induction
-
from a well-founded ordering on a given set *)
Set Implicit Arguments.
@@ -40,6 +39,7 @@ Section Well_founded.
[let Acc_rec F = let rec wf x = F x wf in wf] *)
Section AccRecType.
+
Variable P : A -> Type.
Variable F : forall x:A,
(forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
@@ -51,17 +51,6 @@ Section Well_founded.
Definition Acc_rec (P:A -> Set) := Acc_rect P.
- (** A simplified version of [Acc_rect] *)
-
- Section AccIter.
- Variable P : A -> Type.
- Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
-
- Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x :=
- F (fun (y:A) (h:R y x) => Acc_iter (Acc_inv a h)).
-
- End AccIter.
-
(** A relation is well-founded if every element is accessible *)
Definition well_founded := forall a:A, Acc a.
@@ -74,7 +63,7 @@ Section Well_founded.
forall P:A -> Type,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
Proof.
- intros; apply (Acc_iter P); auto.
+ intros; apply Acc_rect; auto.
Defined.
Theorem well_founded_induction :
@@ -91,16 +80,26 @@ Section Well_founded.
exact (fun P:A -> Prop => well_founded_induction_type P).
Defined.
-(** Building fixpoints *)
+(** Well-founded fixpoints *)
Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
- Notation Fix_F := (Acc_iter P F) (only parsing). (* alias *)
+ Fixpoint Fix_F (x:A) (a:Acc x) {struct a} : P x :=
+ F (fun (y:A) (h:R y x) => Fix_F (Acc_inv a h)).
+
+ Scheme Acc_inv_dep := Induction for Acc Sort Prop.
+
+ Lemma Fix_F_eq :
+ forall (x:A) (r:Acc x),
+ F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)) = Fix_F (x:=x) r.
+ Proof.
+ destruct r using Acc_inv_dep; auto.
+ Qed.
- Definition Fix (x:A) := Acc_iter P F (Rwf x).
+ Definition Fix (x:A) := Fix_F (Rwf x).
(** Proof that [well_founded_induction] satisfies the fixpoint equation.
It requires an extra property of the functional *)
@@ -110,16 +109,7 @@ Section Well_founded.
forall (x:A) (f g:forall y:A, R y x -> P y),
(forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.
- Scheme Acc_inv_dep := Induction for Acc Sort Prop.
-
- Lemma Fix_F_eq :
- forall (x:A) (r:Acc x),
- F (fun (y:A) (p:R y x) => Fix_F y (Acc_inv r p)) = Fix_F x r.
- Proof.
- destruct r using Acc_inv_dep; auto.
- Qed.
-
- Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
+ Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s.
Proof.
intro x; induction (Rwf x); intros.
rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
@@ -129,7 +119,7 @@ Section Well_founded.
Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
Proof.
intro x; unfold Fix in |- *.
- rewrite <- (Fix_F_eq (x:=x)).
+ rewrite <- Fix_F_eq.
apply F_ext; intros.
apply Fix_F_inv.
Qed.
@@ -138,27 +128,29 @@ Section Well_founded.
End Well_founded.
-(** A recursor over pairs *)
+(** Well-founded fixpoints over pairs *)
Section Well_founded_2.
- Variables A B : Set.
+ Variables A B : Type.
Variable R : A * B -> A * B -> Prop.
Variable P : A -> B -> Type.
- Section Acc_iter_2.
+ Section FixPoint_2.
+
Variable
F :
forall (x:A) (x':B),
(forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x'.
- Fixpoint Acc_iter_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} :
+ Fixpoint Fix_F_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} :
P x x' :=
F
(fun (y:A) (y':B) (h:R (y, y') (x, x')) =>
- Acc_iter_2 (x:=y) (x':=y') (Acc_inv a (y, y') h)).
- End Acc_iter_2.
+ Fix_F_2 (x:=y) (x':=y') (Acc_inv a (y,y') h)).
+
+ End FixPoint_2.
Hypothesis Rwf : well_founded R.
@@ -167,9 +159,10 @@ Section Well_founded_2.
(forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x') ->
forall (a:A) (b:B), P a b.
Proof.
- intros; apply Acc_iter_2; auto.
+ intros; apply Fix_F_2; auto.
Defined.
End Well_founded_2.
-Notation Fix_F := Acc_iter (only parsing). (* compatibility *)
+Notation Acc_iter := Fix_F (only parsing). (* compatibility *)
+Notation Acc_iter_2 := Fix_F_2 (only parsing). (* compatibility *)