summaryrefslogtreecommitdiff
path: root/theories/Init/Specif.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Specif.v')
-rw-r--r--theories/Init/Specif.v481
1 files changed, 461 insertions, 20 deletions
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index 9fc00e80..b6afba29 100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -1,9 +1,11 @@
(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Basic specifications : sets that may contain logical information *)
@@ -49,10 +51,20 @@ Notation "{ x | P & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A | P }" := (sig (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A | P & Q }" := (sig2 (A:=A) (fun x => P) (fun x => Q)) :
type_scope.
+Notation "{ x & P }" := (sigT (fun x => P)) : type_scope.
Notation "{ x : A & P }" := (sigT (A:=A) (fun x => P)) : type_scope.
Notation "{ x : A & P & Q }" := (sigT2 (A:=A) (fun x => P) (fun x => Q)) :
type_scope.
+Notation "{ ' pat | P }" := (sig (fun pat => P)) : type_scope.
+Notation "{ ' pat | P & Q }" := (sig2 (fun pat => P) (fun pat => Q)) : type_scope.
+Notation "{ ' pat : A | P }" := (sig (A:=A) (fun pat => P)) : type_scope.
+Notation "{ ' pat : A | P & Q }" := (sig2 (A:=A) (fun pat => P) (fun pat => Q)) :
+ type_scope.
+Notation "{ ' pat : A & P }" := (sigT (A:=A) (fun pat => P)) : type_scope.
+Notation "{ ' pat : A & P & Q }" := (sigT2 (A:=A) (fun pat => P) (fun pat => Q)) :
+ type_scope.
+
Add Printing Let sig.
Add Printing Let sig2.
Add Printing Let sigT.
@@ -103,7 +115,7 @@ Definition sig_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sig P
of an [a] of type [A], a of a proof [h] that [a] satisfies [P],
and a proof [h'] that [a] satisfies [Q]. Then
[(proj1_sig (sig_of_sig2 y))] is the witness [a],
- [(proj2_sig (sig_of_sig2 y))] is the proof of [(P a)], and
+ [(proj2_sig (sig_of_sig2 y))] is the proof of [(P a)], and
[(proj3_sig y)] is the proof of [(Q a)]. *)
Section Subset_projections2.
@@ -190,6 +202,435 @@ Definition sig2_of_sigT2 (A : Type) (P Q : A -> Prop) (X : sigT2 P Q) : sig2 P Q
Definition sigT2_of_sig2 (A : Type) (P Q : A -> Prop) (X : sig2 P Q) : sigT2 P Q
:= existT2 P Q (proj1_sig (sig_of_sig2 X)) (proj2_sig (sig_of_sig2 X)) (proj3_sig X).
+(** η Principles *)
+Definition sigT_eta {A P} (p : { a : A & P a })
+ : p = existT _ (projT1 p) (projT2 p).
+Proof. destruct p; reflexivity. Defined.
+
+Definition sig_eta {A P} (p : { a : A | P a })
+ : p = exist _ (proj1_sig p) (proj2_sig p).
+Proof. destruct p; reflexivity. Defined.
+
+Definition sigT2_eta {A P Q} (p : { a : A & P a & Q a })
+ : p = existT2 _ _ (projT1 (sigT_of_sigT2 p)) (projT2 (sigT_of_sigT2 p)) (projT3 p).
+Proof. destruct p; reflexivity. Defined.
+
+Definition sig2_eta {A P Q} (p : { a : A | P a & Q a })
+ : p = exist2 _ _ (proj1_sig (sig_of_sig2 p)) (proj2_sig (sig_of_sig2 p)) (proj3_sig p).
+Proof. destruct p; reflexivity. Defined.
+
+(** [exists x : A, B] is equivalent to [inhabited {x : A | B}] *)
+Lemma exists_to_inhabited_sig {A P} : (exists x : A, P x) -> inhabited {x : A | P x}.
+Proof.
+ intros [x y]. exact (inhabits (exist _ x y)).
+Qed.
+
+Lemma inhabited_sig_to_exists {A P} : inhabited {x : A | P x} -> exists x : A, P x.
+Proof.
+ intros [[x y]];exists x;exact y.
+Qed.
+
+(** Equality of sigma types *)
+Import EqNotations.
+Local Notation "'rew' 'dependent' H 'in' H'"
+ := (match H with
+ | eq_refl => H'
+ end)
+ (at level 10, H' at level 10,
+ format "'[' 'rew' 'dependent' '/ ' H in '/' H' ']'").
+
+(** Equality for [sigT] *)
+Section sigT.
+ Local Unset Implicit Arguments.
+ (** Projecting an equality of a pair to equality of the first components *)
+ Definition projT1_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
+ : projT1 u = projT1 v
+ := f_equal (@projT1 _ _) p.
+
+ (** Projecting an equality of a pair to equality of the second components *)
+ Definition projT2_eq {A} {P : A -> Type} {u v : { a : A & P a }} (p : u = v)
+ : rew projT1_eq p in projT2 u = projT2 v
+ := rew dependent p in eq_refl.
+
+ (** Equality of [sigT] is itself a [sigT] (forwards-reasoning version) *)
+ Definition eq_existT_uncurried {A : Type} {P : A -> Type} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
+ (pq : { p : u1 = v1 & rew p in u2 = v2 })
+ : existT _ u1 u2 = existT _ v1 v2.
+ Proof.
+ destruct pq as [p q].
+ destruct q; simpl in *.
+ destruct p; reflexivity.
+ Defined.
+
+ (** Equality of [sigT] is itself a [sigT] (backwards-reasoning version) *)
+ Definition eq_sigT_uncurried {A : Type} {P : A -> Type} (u v : { a : A & P a })
+ (pq : { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v })
+ : u = v.
+ Proof.
+ destruct u as [u1 u2], v as [v1 v2]; simpl in *.
+ apply eq_existT_uncurried; exact pq.
+ Defined.
+
+ (** Curried version of proving equality of sigma types *)
+ Definition eq_sigT {A : Type} {P : A -> Type} (u v : { a : A & P a })
+ (p : projT1 u = projT1 v) (q : rew p in projT2 u = projT2 v)
+ : u = v
+ := eq_sigT_uncurried u v (existT _ p q).
+
+ (** Equality of [sigT] when the property is an hProp *)
+ Definition eq_sigT_hprop {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
+ (u v : { a : A & P a })
+ (p : projT1 u = projT1 v)
+ : u = v
+ := eq_sigT u v p (P_hprop _ _ _).
+
+ (** Equivalence of equality of [sigT] with a [sigT] of equality *)
+ (** We could actually prove an isomorphism here, and not just [<->],
+ but for simplicity, we don't. *)
+ Definition eq_sigT_uncurried_iff {A P}
+ (u v : { a : A & P a })
+ : u = v <-> { p : projT1 u = projT1 v & rew p in projT2 u = projT2 v }.
+ Proof.
+ split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT_uncurried ].
+ Defined.
+
+ (** Induction principle for [@eq (sigT _)] *)
+ Definition eq_sigT_rect {A P} {u v : { a : A & P a }} (Q : u = v -> Type)
+ (f : forall p q, Q (eq_sigT u v p q))
+ : forall p, Q p.
+ Proof. intro p; specialize (f (projT1_eq p) (projT2_eq p)); destruct u, p; exact f. Defined.
+ Definition eq_sigT_rec {A P u v} (Q : u = v :> { a : A & P a } -> Set) := eq_sigT_rect Q.
+ Definition eq_sigT_ind {A P u v} (Q : u = v :> { a : A & P a } -> Prop) := eq_sigT_rec Q.
+
+ (** Equivalence of equality of [sigT] involving hProps with equality of the first components *)
+ Definition eq_sigT_hprop_iff {A P} (P_hprop : forall (x : A) (p q : P x), p = q)
+ (u v : { a : A & P a })
+ : u = v <-> (projT1 u = projT1 v)
+ := conj (fun p => f_equal (@projT1 _ _) p) (eq_sigT_hprop P_hprop u v).
+
+ (** Non-dependent classification of equality of [sigT] *)
+ Definition eq_sigT_nondep {A B : Type} (u v : { a : A & B })
+ (p : projT1 u = projT1 v) (q : projT2 u = projT2 v)
+ : u = v
+ := @eq_sigT _ _ u v p (eq_trans (rew_const _ _) q).
+
+ (** Classification of transporting across an equality of [sigT]s *)
+ Lemma rew_sigT {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x & Q x p }) {y} (H : x = y)
+ : rew [fun a => { p : P a & Q a p }] H in u
+ = existT
+ (Q y)
+ (rew H in projT1 u)
+ (rew dependent H in (projT2 u)).
+ Proof.
+ destruct H, u; reflexivity.
+ Defined.
+End sigT.
+
+(** Equality for [sig] *)
+Section sig.
+ Local Unset Implicit Arguments.
+ (** Projecting an equality of a pair to equality of the first components *)
+ Definition proj1_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
+ : proj1_sig u = proj1_sig v
+ := f_equal (@proj1_sig _ _) p.
+
+ (** Projecting an equality of a pair to equality of the second components *)
+ Definition proj2_sig_eq {A} {P : A -> Prop} {u v : { a : A | P a }} (p : u = v)
+ : rew proj1_sig_eq p in proj2_sig u = proj2_sig v
+ := rew dependent p in eq_refl.
+
+ (** Equality of [sig] is itself a [sig] (forwards-reasoning version) *)
+ Definition eq_exist_uncurried {A : Type} {P : A -> Prop} {u1 v1 : A} {u2 : P u1} {v2 : P v1}
+ (pq : { p : u1 = v1 | rew p in u2 = v2 })
+ : exist _ u1 u2 = exist _ v1 v2.
+ Proof.
+ destruct pq as [p q].
+ destruct q; simpl in *.
+ destruct p; reflexivity.
+ Defined.
+
+ (** Equality of [sig] is itself a [sig] (backwards-reasoning version) *)
+ Definition eq_sig_uncurried {A : Type} {P : A -> Prop} (u v : { a : A | P a })
+ (pq : { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v })
+ : u = v.
+ Proof.
+ destruct u as [u1 u2], v as [v1 v2]; simpl in *.
+ apply eq_exist_uncurried; exact pq.
+ Defined.
+
+ (** Curried version of proving equality of sigma types *)
+ Definition eq_sig {A : Type} {P : A -> Prop} (u v : { a : A | P a })
+ (p : proj1_sig u = proj1_sig v) (q : rew p in proj2_sig u = proj2_sig v)
+ : u = v
+ := eq_sig_uncurried u v (exist _ p q).
+
+ (** Induction principle for [@eq (sig _)] *)
+ Definition eq_sig_rect {A P} {u v : { a : A | P a }} (Q : u = v -> Type)
+ (f : forall p q, Q (eq_sig u v p q))
+ : forall p, Q p.
+ Proof. intro p; specialize (f (proj1_sig_eq p) (proj2_sig_eq p)); destruct u, p; exact f. Defined.
+ Definition eq_sig_rec {A P u v} (Q : u = v :> { a : A | P a } -> Set) := eq_sig_rect Q.
+ Definition eq_sig_ind {A P u v} (Q : u = v :> { a : A | P a } -> Prop) := eq_sig_rec Q.
+
+ (** Equality of [sig] when the property is an hProp *)
+ Definition eq_sig_hprop {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
+ (u v : { a : A | P a })
+ (p : proj1_sig u = proj1_sig v)
+ : u = v
+ := eq_sig u v p (P_hprop _ _ _).
+
+ (** Equivalence of equality of [sig] with a [sig] of equality *)
+ (** We could actually prove an isomorphism here, and not just [<->],
+ but for simplicity, we don't. *)
+ Definition eq_sig_uncurried_iff {A} {P : A -> Prop}
+ (u v : { a : A | P a })
+ : u = v <-> { p : proj1_sig u = proj1_sig v | rew p in proj2_sig u = proj2_sig v }.
+ Proof.
+ split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig_uncurried ].
+ Defined.
+
+ (** Equivalence of equality of [sig] involving hProps with equality of the first components *)
+ Definition eq_sig_hprop_iff {A} {P : A -> Prop} (P_hprop : forall (x : A) (p q : P x), p = q)
+ (u v : { a : A | P a })
+ : u = v <-> (proj1_sig u = proj1_sig v)
+ := conj (fun p => f_equal (@proj1_sig _ _) p) (eq_sig_hprop P_hprop u v).
+
+ Lemma rew_sig {A x} {P : A -> Type} (Q : forall a, P a -> Prop) (u : { p : P x | Q x p }) {y} (H : x = y)
+ : rew [fun a => { p : P a | Q a p }] H in u
+ = exist
+ (Q y)
+ (rew H in proj1_sig u)
+ (rew dependent H in proj2_sig u).
+ Proof.
+ destruct H, u; reflexivity.
+ Defined.
+End sig.
+
+(** Equality for [sigT] *)
+Section sigT2.
+ (* We make [sigT_of_sigT2] a coercion so we can use [projT1], [projT2] on [sigT2] *)
+ Local Coercion sigT_of_sigT2 : sigT2 >-> sigT.
+ Local Unset Implicit Arguments.
+ (** Projecting an equality of a pair to equality of the first components *)
+ Definition sigT_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
+ : u = v :> { a : A & P a }
+ := f_equal _ p.
+ Definition projT1_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
+ : projT1 u = projT1 v
+ := projT1_eq (sigT_of_sigT2_eq p).
+
+ (** Projecting an equality of a pair to equality of the second components *)
+ Definition projT2_of_sigT2_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
+ : rew projT1_of_sigT2_eq p in projT2 u = projT2 v
+ := rew dependent p in eq_refl.
+
+ (** Projecting an equality of a pair to equality of the third components *)
+ Definition projT3_eq {A} {P Q : A -> Type} {u v : { a : A & P a & Q a }} (p : u = v)
+ : rew projT1_of_sigT2_eq p in projT3 u = projT3 v
+ := rew dependent p in eq_refl.
+
+ (** Equality of [sigT2] is itself a [sigT2] (forwards-reasoning version) *)
+ Definition eq_existT2_uncurried {A : Type} {P Q : A -> Type}
+ {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
+ (pqr : { p : u1 = v1
+ & rew p in u2 = v2 & rew p in u3 = v3 })
+ : existT2 _ _ u1 u2 u3 = existT2 _ _ v1 v2 v3.
+ Proof.
+ destruct pqr as [p q r].
+ destruct r, q, p; simpl.
+ reflexivity.
+ Defined.
+
+ (** Equality of [sigT2] is itself a [sigT2] (backwards-reasoning version) *)
+ Definition eq_sigT2_uncurried {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
+ (pqr : { p : projT1 u = projT1 v
+ & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v })
+ : u = v.
+ Proof.
+ destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *.
+ apply eq_existT2_uncurried; exact pqr.
+ Defined.
+
+ (** Curried version of proving equality of sigma types *)
+ Definition eq_sigT2 {A : Type} {P Q : A -> Type} (u v : { a : A & P a & Q a })
+ (p : projT1 u = projT1 v)
+ (q : rew p in projT2 u = projT2 v)
+ (r : rew p in projT3 u = projT3 v)
+ : u = v
+ := eq_sigT2_uncurried u v (existT2 _ _ p q r).
+
+ (** Equality of [sigT2] when the second property is an hProp *)
+ Definition eq_sigT2_hprop {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
+ (u v : { a : A & P a & Q a })
+ (p : u = v :> { a : A & P a })
+ : u = v
+ := eq_sigT2 u v (projT1_eq p) (projT2_eq p) (Q_hprop _ _ _).
+
+ (** Equivalence of equality of [sigT2] with a [sigT2] of equality *)
+ (** We could actually prove an isomorphism here, and not just [<->],
+ but for simplicity, we don't. *)
+ Definition eq_sigT2_uncurried_iff {A P Q}
+ (u v : { a : A & P a & Q a })
+ : u = v
+ <-> { p : projT1 u = projT1 v
+ & rew p in projT2 u = projT2 v & rew p in projT3 u = projT3 v }.
+ Proof.
+ split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sigT2_uncurried ].
+ Defined.
+
+ (** Induction principle for [@eq (sigT2 _ _)] *)
+ Definition eq_sigT2_rect {A P Q} {u v : { a : A & P a & Q a }} (R : u = v -> Type)
+ (f : forall p q r, R (eq_sigT2 u v p q r))
+ : forall p, R p.
+ Proof.
+ intro p.
+ specialize (f (projT1_of_sigT2_eq p) (projT2_of_sigT2_eq p) (projT3_eq p)).
+ destruct u, p; exact f.
+ Defined.
+ Definition eq_sigT2_rec {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Set) := eq_sigT2_rect R.
+ Definition eq_sigT2_ind {A P Q u v} (R : u = v :> { a : A & P a & Q a } -> Prop) := eq_sigT2_rec R.
+
+ (** Equivalence of equality of [sigT2] involving hProps with equality of the first components *)
+ Definition eq_sigT2_hprop_iff {A P Q} (Q_hprop : forall (x : A) (p q : Q x), p = q)
+ (u v : { a : A & P a & Q a })
+ : u = v <-> (u = v :> { a : A & P a })
+ := conj (fun p => f_equal (@sigT_of_sigT2 _ _ _) p) (eq_sigT2_hprop Q_hprop u v).
+
+ (** Non-dependent classification of equality of [sigT] *)
+ Definition eq_sigT2_nondep {A B C : Type} (u v : { a : A & B & C })
+ (p : projT1 u = projT1 v) (q : projT2 u = projT2 v) (r : projT3 u = projT3 v)
+ : u = v
+ := @eq_sigT2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).
+
+ (** Classification of transporting across an equality of [sigT2]s *)
+ Lemma rew_sigT2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
+ (u : { p : P x & Q x p & R x p })
+ {y} (H : x = y)
+ : rew [fun a => { p : P a & Q a p & R a p }] H in u
+ = existT2
+ (Q y)
+ (R y)
+ (rew H in projT1 u)
+ (rew dependent H in projT2 u)
+ (rew dependent H in projT3 u).
+ Proof.
+ destruct H, u; reflexivity.
+ Defined.
+End sigT2.
+
+(** Equality for [sig2] *)
+Section sig2.
+ (* We make [sig_of_sig2] a coercion so we can use [proj1], [proj2] on [sig2] *)
+ Local Coercion sig_of_sig2 : sig2 >-> sig.
+ Local Unset Implicit Arguments.
+ (** Projecting an equality of a pair to equality of the first components *)
+ Definition sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
+ : u = v :> { a : A | P a }
+ := f_equal _ p.
+ Definition proj1_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
+ : proj1_sig u = proj1_sig v
+ := proj1_sig_eq (sig_of_sig2_eq p).
+
+ (** Projecting an equality of a pair to equality of the second components *)
+ Definition proj2_sig_of_sig2_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
+ : rew proj1_sig_of_sig2_eq p in proj2_sig u = proj2_sig v
+ := rew dependent p in eq_refl.
+
+ (** Projecting an equality of a pair to equality of the third components *)
+ Definition proj3_sig_eq {A} {P Q : A -> Prop} {u v : { a : A | P a & Q a }} (p : u = v)
+ : rew proj1_sig_of_sig2_eq p in proj3_sig u = proj3_sig v
+ := rew dependent p in eq_refl.
+
+ (** Equality of [sig2] is itself a [sig2] (fowards-reasoning version) *)
+ Definition eq_exist2_uncurried {A} {P Q : A -> Prop}
+ {u1 v1 : A} {u2 : P u1} {v2 : P v1} {u3 : Q u1} {v3 : Q v1}
+ (pqr : { p : u1 = v1
+ | rew p in u2 = v2 & rew p in u3 = v3 })
+ : exist2 _ _ u1 u2 u3 = exist2 _ _ v1 v2 v3.
+ Proof.
+ destruct pqr as [p q r].
+ destruct r, q, p; simpl.
+ reflexivity.
+ Defined.
+
+ (** Equality of [sig2] is itself a [sig2] (backwards-reasoning version) *)
+ Definition eq_sig2_uncurried {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
+ (pqr : { p : proj1_sig u = proj1_sig v
+ | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v })
+ : u = v.
+ Proof.
+ destruct u as [u1 u2 u3], v as [v1 v2 v3]; simpl in *.
+ apply eq_exist2_uncurried; exact pqr.
+ Defined.
+
+ (** Curried version of proving equality of sigma types *)
+ Definition eq_sig2 {A} {P Q : A -> Prop} (u v : { a : A | P a & Q a })
+ (p : proj1_sig u = proj1_sig v)
+ (q : rew p in proj2_sig u = proj2_sig v)
+ (r : rew p in proj3_sig u = proj3_sig v)
+ : u = v
+ := eq_sig2_uncurried u v (exist2 _ _ p q r).
+
+ (** Equality of [sig2] when the second property is an hProp *)
+ Definition eq_sig2_hprop {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
+ (u v : { a : A | P a & Q a })
+ (p : u = v :> { a : A | P a })
+ : u = v
+ := eq_sig2 u v (proj1_sig_eq p) (proj2_sig_eq p) (Q_hprop _ _ _).
+
+ (** Equivalence of equality of [sig2] with a [sig2] of equality *)
+ (** We could actually prove an isomorphism here, and not just [<->],
+ but for simplicity, we don't. *)
+ Definition eq_sig2_uncurried_iff {A P Q}
+ (u v : { a : A | P a & Q a })
+ : u = v
+ <-> { p : proj1_sig u = proj1_sig v
+ | rew p in proj2_sig u = proj2_sig v & rew p in proj3_sig u = proj3_sig v }.
+ Proof.
+ split; [ intro; subst; exists eq_refl; reflexivity | apply eq_sig2_uncurried ].
+ Defined.
+
+ (** Induction principle for [@eq (sig2 _ _)] *)
+ Definition eq_sig2_rect {A P Q} {u v : { a : A | P a & Q a }} (R : u = v -> Type)
+ (f : forall p q r, R (eq_sig2 u v p q r))
+ : forall p, R p.
+ Proof.
+ intro p.
+ specialize (f (proj1_sig_of_sig2_eq p) (proj2_sig_of_sig2_eq p) (proj3_sig_eq p)).
+ destruct u, p; exact f.
+ Defined.
+ Definition eq_sig2_rec {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Set) := eq_sig2_rect R.
+ Definition eq_sig2_ind {A P Q u v} (R : u = v :> { a : A | P a & Q a } -> Prop) := eq_sig2_rec R.
+
+ (** Equivalence of equality of [sig2] involving hProps with equality of the first components *)
+ Definition eq_sig2_hprop_iff {A} {P Q : A -> Prop} (Q_hprop : forall (x : A) (p q : Q x), p = q)
+ (u v : { a : A | P a & Q a })
+ : u = v <-> (u = v :> { a : A | P a })
+ := conj (fun p => f_equal (@sig_of_sig2 _ _ _) p) (eq_sig2_hprop Q_hprop u v).
+
+ (** Non-dependent classification of equality of [sig] *)
+ Definition eq_sig2_nondep {A} {B C : Prop} (u v : @sig2 A (fun _ => B) (fun _ => C))
+ (p : proj1_sig u = proj1_sig v) (q : proj2_sig u = proj2_sig v) (r : proj3_sig u = proj3_sig v)
+ : u = v
+ := @eq_sig2 _ _ _ u v p (eq_trans (rew_const _ _) q) (eq_trans (rew_const _ _) r).
+
+ (** Classification of transporting across an equality of [sig2]s *)
+ Lemma rew_sig2 {A x} {P : A -> Type} (Q R : forall a, P a -> Prop)
+ (u : { p : P x | Q x p & R x p })
+ {y} (H : x = y)
+ : rew [fun a => { p : P a | Q a p & R a p }] H in u
+ = exist2
+ (Q y)
+ (R y)
+ (rew H in proj1_sig u)
+ (rew dependent H in proj2_sig u)
+ (rew dependent H in proj3_sig u).
+ Proof.
+ destruct H, u; reflexivity.
+ Defined.
+End sig2.
+
+
(** [sumbool] is a boolean type equipped with the justification of
their value *)
@@ -263,10 +704,10 @@ Section Dependent_choice_lemmas.
(forall x:X, {y | R x y}) ->
forall x0, {f : nat -> X | f O = x0 /\ forall n, R (f n) (f (S n))}.
Proof.
- intros H x0.
+ intros H x0.
set (f:=fix f n := match n with O => x0 | S n' => proj1_sig (H (f n')) end).
exists f.
- split. reflexivity.
+ split. reflexivity.
induction n; simpl; apply proj2_sig.
Defined.
@@ -304,16 +745,16 @@ Hint Resolve exist exist2 existT existT2: core.
(* Compatibility *)
-Notation sigS := sigT (compat "8.2").
-Notation existS := existT (compat "8.2").
-Notation sigS_rect := sigT_rect (compat "8.2").
-Notation sigS_rec := sigT_rec (compat "8.2").
-Notation sigS_ind := sigT_ind (compat "8.2").
-Notation projS1 := projT1 (compat "8.2").
-Notation projS2 := projT2 (compat "8.2").
-
-Notation sigS2 := sigT2 (compat "8.2").
-Notation existS2 := existT2 (compat "8.2").
-Notation sigS2_rect := sigT2_rect (compat "8.2").
-Notation sigS2_rec := sigT2_rec (compat "8.2").
-Notation sigS2_ind := sigT2_ind (compat "8.2").
+Notation sigS := sigT (compat "8.6").
+Notation existS := existT (compat "8.6").
+Notation sigS_rect := sigT_rect (compat "8.6").
+Notation sigS_rec := sigT_rec (compat "8.6").
+Notation sigS_ind := sigT_ind (compat "8.6").
+Notation projS1 := projT1 (compat "8.6").
+Notation projS2 := projT2 (compat "8.6").
+
+Notation sigS2 := sigT2 (compat "8.6").
+Notation existS2 := existT2 (compat "8.6").
+Notation sigS2_rect := sigT2_rect (compat "8.6").
+Notation sigS2_rec := sigT2_rec (compat "8.6").
+Notation sigS2_ind := sigT2_ind (compat "8.6").