summaryrefslogtreecommitdiff
path: root/theories/FSets/OrderedType.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/OrderedType.v')
-rw-r--r--theories/FSets/OrderedType.v566
1 files changed, 566 insertions, 0 deletions
diff --git a/theories/FSets/OrderedType.v b/theories/FSets/OrderedType.v
new file mode 100644
index 00000000..2bf08dc7
--- /dev/null
+++ b/theories/FSets/OrderedType.v
@@ -0,0 +1,566 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id: OrderedType.v 8667 2006-03-28 11:59:44Z letouzey $ *)
+
+Require Export SetoidList.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(* TODO concernant la tactique order:
+ * propagate_lt n'est sans doute pas complet
+ * un propagate_le
+ * exploiter les hypotheses negatives restant a la fin
+ * faire que ca marche meme quand une hypothese depend d'un eq ou lt.
+*)
+
+(** * Ordered types *)
+
+Inductive Compare (X : Set) (lt eq : X -> X -> Prop) (x y : X) : Set :=
+ | LT : lt x y -> Compare lt eq x y
+ | EQ : eq x y -> Compare lt eq x y
+ | GT : lt y x -> Compare lt eq x y.
+
+Module Type OrderedType.
+
+ Parameter t : Set.
+
+ Parameter eq : t -> t -> Prop.
+ Parameter lt : t -> t -> Prop.
+
+ Axiom eq_refl : forall x : t, eq x x.
+ Axiom eq_sym : forall x y : t, eq x y -> eq y x.
+ Axiom eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
+
+ Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
+ Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
+
+ Parameter compare : forall x y : t, Compare lt eq x y.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans lt_not_eq lt_trans.
+
+End OrderedType.
+
+(** * Ordered types properties *)
+
+(** Additional properties that can be derived from signature
+ [OrderedType]. *)
+
+Module OrderedTypeFacts (O: OrderedType).
+ Import O.
+
+ Lemma lt_antirefl : forall x, ~ lt x x.
+ Proof.
+ intros; intro; absurd (eq x x); auto.
+ Qed.
+
+ Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (lt_not_eq H); apply eq_trans with z; auto.
+ elim (lt_not_eq (lt_trans l H)); auto.
+ Qed.
+
+ Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z.
+ Proof.
+ intros; destruct (compare x z); auto.
+ elim (lt_not_eq H0); apply eq_trans with x; auto.
+ elim (lt_not_eq (lt_trans H0 l)); auto.
+ Qed.
+
+ Lemma le_eq : forall x y z, ~lt x y -> eq y z -> ~lt x z.
+ Proof.
+ intros; intro; destruct H; apply lt_eq with z; auto.
+ Qed.
+
+ Lemma eq_le : forall x y z, eq x y -> ~lt y z -> ~lt x z.
+ Proof.
+ intros; intro; destruct H0; apply eq_lt with x; auto.
+ Qed.
+
+ Lemma neq_eq : forall x y z, ~eq x y -> eq y z -> ~eq x z.
+ Proof.
+ intros; intro; destruct H; apply eq_trans with z; auto.
+ Qed.
+
+ Lemma eq_neq : forall x y z, eq x y -> ~eq y z -> ~eq x z.
+ Proof.
+ intros; intro; destruct H0; apply eq_trans with x; auto.
+ Qed.
+
+ Hint Immediate eq_lt lt_eq le_eq eq_le neq_eq eq_neq.
+
+ Lemma le_lt_trans : forall x y z, ~lt y x -> lt y z -> lt x z.
+ Proof.
+ intros; destruct (compare y x); auto.
+ elim (H l).
+ apply eq_lt with y; auto.
+ apply lt_trans with y; auto.
+ Qed.
+
+ Lemma lt_le_trans : forall x y z, lt x y -> ~lt z y -> lt x z.
+ Proof.
+ intros; destruct (compare z y); auto.
+ elim (H0 l).
+ apply lt_eq with y; auto.
+ apply lt_trans with y; auto.
+ Qed.
+
+ Lemma le_neq : forall x y, ~lt x y -> ~eq x y -> lt y x.
+ Proof.
+ intros; destruct (compare x y); intuition.
+ Qed.
+
+ Lemma neq_sym : forall x y, ~eq x y -> ~eq y x.
+ Proof.
+ intuition.
+ Qed.
+
+Ltac abstraction := match goal with
+ (* First, some obvious simplifications *)
+ | H : False |- _ => elim H
+ | H : lt ?x ?x |- _ => elim (lt_antirefl H)
+ | H : ~eq ?x ?x |- _ => elim (H (eq_refl x))
+ | H : eq ?x ?x |- _ => clear H; abstraction
+ | H : ~lt ?x ?x |- _ => clear H; abstraction
+ | |- eq ?x ?x => exact (eq_refl x)
+ | |- lt ?x ?x => elimtype False; abstraction
+ | |- ~ _ => intro; abstraction
+ | H1: ~lt ?x ?y, H2: ~eq ?x ?y |- _ =>
+ generalize (le_neq H1 H2); clear H1 H2; intro; abstraction
+ | H1: ~lt ?x ?y, H2: ~eq ?y ?x |- _ =>
+ generalize (le_neq H1 (neq_sym H2)); clear H1 H2; intro; abstraction
+ (* Then, we generalize all interesting facts *)
+ | H : lt ?x ?y |- _ => revert H; abstraction
+ | H : ~lt ?x ?y |- _ => revert H; abstraction
+ | H : ~eq ?x ?y |- _ => revert H; abstraction
+ | H : eq ?x ?y |- _ => revert H; abstraction
+ | _ => idtac
+end.
+
+Ltac do_eq a b EQ := match goal with
+ | |- lt ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_lt (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (lt_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- ~lt ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_le (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (le_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- eq ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_trans (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (eq_trans H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- ~eq ?x ?y -> _ => let H := fresh "H" in
+ (intro H;
+ (generalize (eq_neq (eq_sym EQ) H); clear H; intro H) ||
+ (generalize (neq_eq H EQ); clear H; intro H) ||
+ idtac);
+ do_eq a b EQ
+ | |- lt a ?y => apply eq_lt with b; [exact EQ|]
+ | |- lt ?y a => apply lt_eq with b; [|exact (eq_sym EQ)]
+ | |- eq a ?y => apply eq_trans with b; [exact EQ|]
+ | |- eq ?y a => apply eq_trans with b; [|exact (eq_sym EQ)]
+ | _ => idtac
+ end.
+
+Ltac propagate_eq := abstraction; clear; match goal with
+ (* the abstraction tactic leaves equality facts in head position...*)
+ | |- eq ?a ?b -> _ =>
+ let EQ := fresh "EQ" in (intro EQ; do_eq a b EQ; clear EQ);
+ propagate_eq
+ | _ => idtac
+end.
+
+Ltac do_lt x y LT := match goal with
+ (* LT *)
+ | |- lt x y -> _ => intros _; do_lt x y LT
+ | |- lt y ?z -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_trans LT H); intro); do_lt x y LT
+ | |- lt ?z x -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_trans H LT); intro); do_lt x y LT
+ | |- lt _ _ -> _ => intro; do_lt x y LT
+ (* Ge *)
+ | |- ~lt y x -> _ => intros _; do_lt x y LT
+ | |- ~lt x ?z -> _ => let H := fresh "H" in
+ (intro H; generalize (le_lt_trans H LT); intro); do_lt x y LT
+ | |- ~lt ?z y -> _ => let H := fresh "H" in
+ (intro H; generalize (lt_le_trans LT H); intro); do_lt x y LT
+ | |- ~lt _ _ -> _ => intro; do_lt x y LT
+ | _ => idtac
+ end.
+
+Definition hide_lt := lt.
+
+Ltac propagate_lt := abstraction; match goal with
+ (* when no [=] remains, the abstraction tactic leaves [<] facts first. *)
+ | |- lt ?x ?y -> _ =>
+ let LT := fresh "LT" in (intro LT; do_lt x y LT;
+ change (hide_lt x y) in LT);
+ propagate_lt
+ | _ => unfold hide_lt in *
+end.
+
+Ltac order :=
+ intros;
+ propagate_eq;
+ propagate_lt;
+ auto;
+ propagate_lt;
+ eauto.
+
+Ltac false_order := elimtype False; order.
+
+ Lemma gt_not_eq : forall x y, lt y x -> ~ eq x y.
+ Proof.
+ order.
+ Qed.
+
+ Lemma eq_not_lt : forall x y : t, eq x y -> ~ lt x y.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve gt_not_eq eq_not_lt.
+
+ Lemma eq_not_gt : forall x y : t, eq x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Lemma lt_not_gt : forall x y : t, lt x y -> ~ lt y x.
+ Proof.
+ order.
+ Qed.
+
+ Hint Resolve eq_not_gt lt_antirefl lt_not_gt.
+
+ Lemma elim_compare_eq :
+ forall x y : t,
+ eq x y -> exists H : eq x y, compare x y = EQ _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Lemma elim_compare_lt :
+ forall x y : t,
+ lt x y -> exists H : lt x y, compare x y = LT _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Lemma elim_compare_gt :
+ forall x y : t,
+ lt y x -> exists H : lt y x, compare x y = GT _ H.
+ Proof.
+ intros; case (compare x y); intros H'; try solve [false_order].
+ exists H'; auto.
+ Qed.
+
+ Ltac elim_comp :=
+ match goal with
+ | |- ?e => match e with
+ | context ctx [ compare ?a ?b ] =>
+ let H := fresh in
+ (destruct (compare a b) as [H|H|H];
+ try solve [ intros; false_order])
+ end
+ end.
+
+ Ltac elim_comp_eq x y :=
+ elim (elim_compare_eq (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ Ltac elim_comp_lt x y :=
+ elim (elim_compare_lt (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ Ltac elim_comp_gt x y :=
+ elim (elim_compare_gt (x:=x) (y:=y));
+ [ intros _1 _2; rewrite _2; clear _1 _2 | auto ].
+
+ Lemma eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
+ Proof.
+ intros; elim (compare x y); [ right | left | right ]; auto.
+ Qed.
+
+ Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
+ Proof.
+ intros; elim (compare x y); [ left | right | right ]; auto.
+ Qed.
+
+ Definition eqb x y : bool := if eq_dec x y then true else false.
+
+ Lemma eqb_alt :
+ forall x y, eqb x y = match compare x y with EQ _ => true | _ => false end.
+ Proof.
+ unfold eqb; intros; destruct (eq_dec x y); elim_comp; auto.
+ Qed.
+
+(* Specialization of resuts about lists modulo. *)
+
+Notation In:=(InA eq).
+Notation Inf:=(lelistA lt).
+Notation Sort:=(sort lt).
+Notation NoDup:=(NoDupA eq).
+
+Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+Proof. exact (InA_eqA eq_sym eq_trans). Qed.
+
+Lemma ListIn_In : forall l x, List.In x l -> In x l.
+Proof. exact (In_InA eq_refl). Qed.
+
+Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_ltA lt_trans). Qed.
+
+Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
+Proof. exact (InfA_eqA eq_lt). Qed.
+
+Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
+Proof. exact (SortA_InfA_InA eq_refl eq_sym lt_trans lt_eq eq_lt). Qed.
+
+Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
+Proof. exact (@In_InfA t lt). Qed.
+
+Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
+Proof. exact (InA_InfA eq_refl (ltA:=lt)). Qed.
+
+Lemma Inf_alt :
+ forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
+Proof. exact (InfA_alt eq_refl eq_sym lt_trans lt_eq eq_lt). Qed.
+
+Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
+Proof. exact (SortA_NoDupA eq_refl eq_sym lt_trans lt_not_eq lt_eq eq_lt) . Qed.
+
+Hint Resolve ListIn_In Sort_NoDup Inf_lt.
+Hint Immediate In_eq Inf_lt.
+
+End OrderedTypeFacts.
+
+Module PairOrderedType(O:OrderedType).
+ Import O.
+ Module MO:=OrderedTypeFacts(O).
+ Import MO.
+
+ Section Elt.
+ Variable elt : Set.
+ Notation key:=t.
+
+ Definition eqk (p p':key*elt) := eq (fst p) (fst p').
+ Definition eqke (p p':key*elt) :=
+ eq (fst p) (fst p') /\ (snd p) = (snd p').
+ Definition ltk (p p':key*elt) := lt (fst p) (fst p').
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+
+ (* eqke is stricter than eqk *)
+
+ Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'.
+ Proof.
+ unfold eqk, eqke; intuition.
+ Qed.
+
+ (* ltk ignore the second components *)
+
+ Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e').
+ Proof. auto. Qed.
+
+ Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x.
+ Proof. auto. Qed.
+ Hint Immediate ltk_right_r ltk_right_l.
+
+ (* eqk, eqke are equalities, ltk is a strict order *)
+
+ Lemma eqk_refl : forall e, eqk e e.
+ Proof. auto. Qed.
+
+ Lemma eqke_refl : forall e, eqke e e.
+ Proof. auto. Qed.
+
+ Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e.
+ Proof. auto. Qed.
+
+ Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e.
+ Proof. unfold eqke; intuition. Qed.
+
+ Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''.
+ Proof. eauto. Qed.
+
+ Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''.
+ Proof.
+ unfold eqke; intuition; [ eauto | congruence ].
+ Qed.
+
+ Lemma ltk_trans : forall e e' e'', ltk e e' -> ltk e' e'' -> ltk e e''.
+ Proof. eauto. Qed.
+
+ Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
+ Proof. unfold eqk, ltk; auto. Qed.
+
+ Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
+ Proof.
+ unfold eqke, ltk; intuition; simpl in *; subst.
+ exact (lt_not_eq H H1).
+ Qed.
+
+ Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
+ Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke.
+ Hint Immediate eqk_sym eqke_sym.
+
+ (* Additionnal facts *)
+
+ Lemma eqk_not_ltk : forall x x', eqk x x' -> ~ltk x x'.
+ Proof.
+ unfold eqk, ltk; simpl; auto.
+ Qed.
+
+ Lemma ltk_eqk : forall e e' e'', ltk e e' -> eqk e' e'' -> ltk e e''.
+ Proof. eauto. Qed.
+
+ Lemma eqk_ltk : forall e e' e'', eqk e e' -> ltk e' e'' -> ltk e e''.
+ Proof.
+ intros (k,e) (k',e') (k'',e'').
+ unfold ltk, eqk; simpl; eauto.
+ Qed.
+ Hint Resolve eqk_not_ltk.
+ Hint Immediate ltk_eqk eqk_ltk.
+
+ Lemma InA_eqke_eqk :
+ forall x m, InA eqke x m -> InA eqk x m.
+ Proof.
+ unfold eqke; induction 1; intuition.
+ Qed.
+ Hint Resolve InA_eqke_eqk.
+
+ Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
+ Definition In k m := exists e:elt, MapsTo k e m.
+ Notation Sort := (sort ltk).
+ Notation Inf := (lelistA ltk).
+
+ Hint Unfold MapsTo In.
+
+ (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
+
+ Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
+ Proof.
+ firstorder.
+ exists x; auto.
+ induction H.
+ destruct y.
+ exists e; auto.
+ destruct IHInA as [e H0].
+ exists e; auto.
+ Qed.
+
+ Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
+ Proof.
+ intros; unfold MapsTo in *; apply InA_eqA with (x,e); eauto.
+ Qed.
+
+ Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
+ Proof.
+ destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto.
+ Qed.
+
+ Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
+ Proof. exact (InfA_eqA eqk_ltk). Qed.
+
+ Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
+ Proof. exact (InfA_ltA ltk_trans). Qed.
+
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+
+ Lemma Sort_Inf_In :
+ forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
+ Proof.
+ exact (SortA_InfA_InA eqk_refl eqk_sym ltk_trans ltk_eqk eqk_ltk).
+ Qed.
+
+ Lemma Sort_Inf_NotIn :
+ forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
+ Proof.
+ intros; red; intros.
+ destruct H1 as [e' H2].
+ elim (@ltk_not_eqk (k,e) (k,e')).
+ eapply Sort_Inf_In; eauto.
+ red; simpl; auto.
+ Qed.
+
+ Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
+ Proof.
+ exact (SortA_NoDupA eqk_refl eqk_sym ltk_trans ltk_not_eqk ltk_eqk eqk_ltk).
+ Qed.
+
+ Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
+ Proof.
+ inversion 1; intros; eapply Sort_Inf_In; eauto.
+ Qed.
+
+ Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
+ ltk e e' \/ eqk e e'.
+ Proof.
+ inversion_clear 2; auto.
+ left; apply Sort_In_cons_1 with l; auto.
+ Qed.
+
+ Lemma Sort_In_cons_3 :
+ forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
+ Proof.
+ inversion_clear 1; red; intros.
+ destruct (Sort_Inf_NotIn H0 H1 (In_eq H2 H)).
+ Qed.
+
+ Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
+ Proof.
+ inversion 1.
+ inversion_clear H0; eauto.
+ destruct H1; simpl in *; intuition.
+ Qed.
+
+ Lemma In_inv_2 : forall k k' e e' l,
+ InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ Lemma In_inv_3 : forall x x' l,
+ InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
+ Proof.
+ inversion_clear 1; compute in H0; intuition.
+ Qed.
+
+ End Elt.
+
+ Hint Unfold eqk eqke ltk.
+ Hint Extern 2 (eqke ?a ?b) => split.
+ Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
+ Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke.
+ Hint Immediate eqk_sym eqke_sym.
+ Hint Resolve eqk_not_ltk.
+ Hint Immediate ltk_eqk eqk_ltk.
+ Hint Resolve InA_eqke_eqk.
+ Hint Unfold MapsTo In.
+ Hint Immediate Inf_eq.
+ Hint Resolve Inf_lt.
+ Hint Resolve Sort_Inf_NotIn.
+ Hint Resolve In_inv_2 In_inv_3.
+
+End PairOrderedType.
+
+