summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetWeakProperties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetWeakProperties.v')
-rw-r--r--theories/FSets/FSetWeakProperties.v896
1 files changed, 0 insertions, 896 deletions
diff --git a/theories/FSets/FSetWeakProperties.v b/theories/FSets/FSetWeakProperties.v
deleted file mode 100644
index a0054d36..00000000
--- a/theories/FSets/FSetWeakProperties.v
+++ /dev/null
@@ -1,896 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeakProperties.v 8853 2006-05-23 18:17:38Z herbelin $ *)
-
-(** * Finite sets library *)
-
-(** NB: this file is a clone of [FSetProperties] for weak sets
- and should remain so until we find a way to share the two. *)
-
-(** This functor derives additional properties from [FSetWeakInterface.S].
- Contrary to the functor in [FSetWeakEqProperties] it uses
- predicates over sets instead of sets operations, i.e.
- [In x s] instead of [mem x s=true],
- [Equal s s'] instead of [equal s s'=true], etc. *)
-
-Require Export FSetWeakInterface.
-Require Import FSetWeakFacts.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Hint Unfold transpose compat_op.
-Hint Extern 1 (Setoid_Theory _ _) => constructor; congruence.
-
-Module Properties (M: S).
- Import M.E.
- Import M.
- Import Logic. (* to unmask [eq] *)
- Import Peano. (* to unmask [lt] *)
-
- (** Results about lists without duplicates *)
-
- Module FM := Facts M.
- Import FM.
-
- Definition Add (x : elt) (s s' : t) :=
- forall y : elt, In y s' <-> E.eq x y \/ In y s.
-
- Lemma In_dec : forall x s, {In x s} + {~ In x s}.
- Proof.
- intros; generalize (mem_iff s x); case (mem x s); intuition.
- Qed.
-
- Section BasicProperties.
-
- (** properties of [Equal] *)
-
- Lemma equal_refl : forall s, s[=]s.
- Proof.
- unfold Equal; intuition.
- Qed.
-
- Lemma equal_sym : forall s s', s[=]s' -> s'[=]s.
- Proof.
- unfold Equal; intros.
- rewrite H; intuition.
- Qed.
-
- Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3.
- Proof.
- unfold Equal; intros.
- rewrite H; exact (H0 a).
- Qed.
-
- Variable s s' s'' s1 s2 s3 : t.
- Variable x x' : elt.
-
- (** properties of [Subset] *)
-
- Lemma subset_refl : s[<=]s.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
- Proof.
- unfold Subset, Equal; intuition.
- Qed.
-
- Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma subset_equal : s[=]s' -> s[<=]s'.
- Proof.
- unfold Subset, Equal; firstorder.
- Qed.
-
- Lemma subset_empty : empty[<=]s.
- Proof.
- unfold Subset; intros a; set_iff; intuition.
- Qed.
-
- Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- rewrite <- H2; auto.
- Qed.
-
- Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
- Proof.
- unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition.
- Qed.
-
- (** properties of [empty] *)
-
- Lemma empty_is_empty_1 : Empty s -> s[=]empty.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
-
- Lemma empty_is_empty_2 : s[=]empty -> Empty s.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
-
- (** properties of [add] *)
-
- Lemma add_equal : In x s -> add x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma add_add : add x (add x' s) [=] add x' (add x s).
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- (** properties of [remove] *)
-
- Lemma remove_equal : ~ In x s -> remove x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite H1 in H; auto.
- Qed.
-
- Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- (** properties of [add] and [remove] *)
-
- Lemma add_remove : In x s -> add x (remove x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite H1 in H; auto.
- Qed.
-
- (** properties of [singleton] *)
-
- Lemma singleton_equal_add : singleton x [=] add x empty.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- (** properties of [union] *)
-
- Lemma union_sym : union s s' [=] union s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma add_union_singleton : add x s [=] union (singleton x) s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_add : union (add x s) s' [=] add x (union s s').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_subset_1 : s [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma union_subset_2 : s' [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- Qed.
-
- Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma empty_union_1 : Empty s -> union s s' [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_union_2 : Empty s -> union s' s [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
- Proof.
- intros; set_iff; intuition.
- Qed.
-
- (** properties of [inter] *)
-
- Lemma inter_sym : inter s s' [=] inter s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- destruct H; rewrite H0; auto.
- Qed.
-
- Lemma empty_inter_1 : Empty s -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma inter_subset_1 : inter s s' [<=] s.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_2 : inter s s' [<=] s'.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_3 :
- s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
- Proof.
- unfold Subset; intros H H' a; set_iff; intuition.
- Qed.
-
- (** properties of [diff] *)
-
- Lemma empty_diff_1 : Empty s -> Empty (diff s s').
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
-
- Lemma diff_subset : diff s s' [<=] s.
- Proof.
- unfold Subset; intros a; set_iff; tauto.
- Qed.
-
- Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
-
- Lemma remove_diff_singleton :
- remove x s [=] diff s (singleton x).
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
- Proof.
- unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
-
- Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- elim (In_dec a s'); auto.
- Qed.
-
- (** properties of [Add] *)
-
- Lemma Add_add : Add x s (add x s).
- Proof.
- unfold Add; intros; set_iff; intuition.
- Qed.
-
- Lemma Add_remove : In x s -> Add x (remove x s) s.
- Proof.
- unfold Add; intros; set_iff; intuition.
- elim (eq_dec x y); auto.
- rewrite <- H1; auto.
- Qed.
-
- Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H; tauto.
- Qed.
-
- Lemma inter_Add :
- In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H0; intuition.
- rewrite <- H2; auto.
- Qed.
-
- Lemma union_Equal :
- In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma inter_Add_2 :
- ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- destruct H; rewrite H1; auto.
- Qed.
-
- End BasicProperties.
-
- Hint Immediate equal_sym: set.
- Hint Resolve equal_refl equal_trans : set.
-
- Hint Immediate add_remove remove_add union_sym inter_sym: set.
- Hint Resolve subset_refl subset_equal subset_antisym
- subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
- subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
- remove_equal singleton_equal_add union_subset_equal union_equal_1
- union_equal_2 union_assoc add_union_singleton union_add union_subset_1
- union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
- inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
- empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
- empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
- inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
- remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
- Equal_remove add_add : set.
-
- (** * Alternative (weaker) specifications for [fold] *)
-
- Section Old_Spec_Now_Properties.
-
- Notation NoDup := (NoDupA E.eq).
-
- (** When [FSets] was first designed, the order in which Ocaml's [Set.fold]
- takes the set elements was unspecified. This specification reflects this fact:
- *)
-
- Lemma fold_0 :
- forall s (A : Set) (i : A) (f : elt -> A -> A),
- exists l : list elt,
- NoDup l /\
- (forall x : elt, In x s <-> InA E.eq x l) /\
- fold f s i = fold_right f i l.
- Proof.
- intros; exists (rev (elements s)); split.
- apply NoDupA_rev; auto.
- exact E.eq_trans.
- split; intros.
- rewrite elements_iff; do 2 rewrite InA_alt.
- split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
- rewrite fold_left_rev_right.
- apply fold_1.
- Qed.
-
- (** An alternate (and previous) specification for [fold] was based on
- the recursive structure of a set. It is now lemmas [fold_1] and
- [fold_2]. *)
-
- Lemma fold_1 :
- forall s (A : Set) (eqA : A -> A -> Prop)
- (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
- Empty s -> eqA (fold f s i) i.
- Proof.
- unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
- rewrite H3; clear H3.
- generalize H H2; clear H H2; case l; simpl; intros.
- refl_st.
- elim (H e).
- elim (H2 e); intuition.
- Qed.
-
- Lemma fold_2 :
- forall s s' x (A : Set) (eqA : A -> A -> Prop)
- (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
- compat_op E.eq eqA f ->
- transpose eqA f ->
- ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
- Proof.
- intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
- destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
- rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
- apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
- eauto.
- exact eq_dec.
- rewrite <- Hl1; auto.
- intros; rewrite <- Hl1; rewrite <- Hl'1; auto.
- Qed.
-
- (** Similar specifications for [cardinal]. *)
-
- Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
- Proof.
- intros; rewrite cardinal_1; rewrite M.fold_1.
- symmetry; apply fold_left_length; auto.
- Qed.
-
- Lemma cardinal_0 :
- forall s, exists l : list elt,
- NoDupA E.eq l /\
- (forall x : elt, In x s <-> InA E.eq x l) /\
- cardinal s = length l.
- Proof.
- intros; exists (elements s); intuition; apply cardinal_1.
- Qed.
-
- Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
- Proof.
- intros; rewrite cardinal_fold; apply fold_1; auto.
- Qed.
-
- Lemma cardinal_2 :
- forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
- Proof.
- intros; do 2 rewrite cardinal_fold.
- change S with ((fun _ => S) x).
- apply fold_2; auto.
- Qed.
-
- End Old_Spec_Now_Properties.
-
- (** * Induction principle over sets *)
-
- Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
- Proof.
- intros s; rewrite M.cardinal_1; intros H a; red.
- rewrite elements_iff.
- destruct (elements s); simpl in *; discriminate || inversion 1.
- Qed.
- Hint Resolve cardinal_inv_1.
-
- Lemma cardinal_inv_2 :
- forall s n, cardinal s = S n -> { x : elt | In x s }.
- Proof.
- intros; rewrite M.cardinal_1 in H.
- generalize (elements_2 (s:=s)).
- destruct (elements s); try discriminate.
- exists e; auto.
- Qed.
-
- Lemma Equal_cardinal_aux :
- forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'.
- Proof.
- simple induction n; intros.
- rewrite H; symmetry .
- apply cardinal_1.
- rewrite <- H0; auto.
- destruct (cardinal_inv_2 H0) as (x,H2).
- revert H0.
- rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
- rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set.
- rewrite H1 in H2; auto with set.
- Qed.
-
- Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
- Proof.
- intros; apply Equal_cardinal_aux with (cardinal s); auto.
- Qed.
-
- Add Morphism cardinal : cardinal_m.
- Proof.
- exact Equal_cardinal.
- Qed.
-
- Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
-
- Lemma cardinal_induction :
- forall P : t -> Type,
- (forall s, Empty s -> P s) ->
- (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
- forall n s, cardinal s = n -> P s.
- Proof.
- simple induction n; intros; auto.
- destruct (cardinal_inv_2 H) as (x,H0).
- apply X0 with (remove x s) x; auto.
- apply X1; auto.
- rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto.
- Qed.
-
- Lemma set_induction :
- forall P : t -> Type,
- (forall s : t, Empty s -> P s) ->
- (forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') ->
- forall s : t, P s.
- Proof.
- intros; apply cardinal_induction with (cardinal s); auto.
- Qed.
-
- (** Other properties of [fold]. *)
-
- Section Fold.
- Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
- Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
-
- Section Fold_1.
- Variable i i':A.
-
- Lemma fold_empty : eqA (fold f empty i) i.
- Proof.
- apply fold_1; auto.
- Qed.
-
- Lemma fold_equal :
- forall s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
- Proof.
- intros s; pattern s; apply set_induction; clear s; intros.
- trans_st i.
- apply fold_1; auto.
- sym_st; apply fold_1; auto.
- rewrite <- H0; auto.
- trans_st (f x (fold f s i)).
- apply fold_2 with (eqA := eqA); auto.
- sym_st; apply fold_2 with (eqA := eqA); auto.
- unfold Add in *; intros.
- rewrite <- H2; auto.
- Qed.
-
- Lemma fold_add : forall s x, ~In x s ->
- eqA (fold f (add x s) i) (f x (fold f s i)).
- Proof.
- intros; apply fold_2 with (eqA := eqA); auto.
- Qed.
-
- Lemma add_fold : forall s x, In x s ->
- eqA (fold f (add x s) i) (fold f s i).
- Proof.
- intros; apply fold_equal; auto with set.
- Qed.
-
- Lemma remove_fold_1: forall s x, In x s ->
- eqA (f x (fold f (remove x s) i)) (fold f s i).
- Proof.
- intros.
- sym_st.
- apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- Lemma remove_fold_2: forall s x, ~In x s ->
- eqA (fold f (remove x s) i) (fold f s i).
- Proof.
- intros.
- apply fold_equal; auto with set.
- Qed.
-
- Lemma fold_commutes : forall s x,
- eqA (fold f s (f x i)) (f x (fold f s i)).
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st (f x i).
- apply fold_1; auto.
- sym_st.
- apply Comp; auto.
- apply fold_1; auto.
- trans_st (f x0 (fold f s (f x i))).
- apply fold_2 with (eqA:=eqA); auto.
- trans_st (f x0 (f x (fold f s i))).
- trans_st (f x (f x0 (fold f s i))).
- apply Comp; auto.
- sym_st.
- apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- Lemma fold_init : forall s, eqA i i' ->
- eqA (fold f s i) (fold f s i').
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st i.
- apply fold_1; auto.
- trans_st i'.
- sym_st; apply fold_1; auto.
- trans_st (f x (fold f s i)).
- apply fold_2 with (eqA:=eqA); auto.
- trans_st (f x (fold f s i')).
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- End Fold_1.
- Section Fold_2.
- Variable i:A.
-
- Lemma fold_union_inter : forall s s',
- eqA (fold f (union s s') (fold f (inter s s') i))
- (fold f s (fold f s' i)).
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st (fold f s' (fold f (inter s s') i)).
- apply fold_equal; auto with set.
- trans_st (fold f s' i).
- apply fold_init; auto.
- apply fold_1; auto with set.
- sym_st; apply fold_1; auto.
- rename s'0 into s''.
- destruct (In_dec x s').
- (* In x s' *)
- trans_st (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
- apply fold_init; auto.
- apply fold_2 with (eqA:=eqA); auto with set.
- rewrite inter_iff; intuition.
- trans_st (f x (fold f s (fold f s' i))).
- trans_st (fold f (union s s') (f x (fold f (inter s s') i))).
- apply fold_equal; auto.
- apply equal_sym; apply union_Equal with x; auto with set.
- trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
- apply fold_commutes; auto.
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- (* ~(In x s') *)
- trans_st (f x (fold f (union s s') (fold f (inter s'' s') i))).
- apply fold_2 with (eqA:=eqA); auto with set.
- trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
- apply Comp;auto.
- apply fold_init;auto.
- apply fold_equal;auto.
- apply equal_sym; apply inter_Add_2 with x; auto with set.
- trans_st (f x (fold f s (fold f s' i))).
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- End Fold_2.
- Section Fold_3.
- Variable i:A.
-
- Lemma fold_diff_inter : forall s s',
- eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
- Proof.
- intros.
- trans_st (fold f (union (diff s s') (inter s s'))
- (fold f (inter (diff s s') (inter s s')) i)).
- sym_st; apply fold_union_inter; auto.
- trans_st (fold f s (fold f (inter (diff s s') (inter s s')) i)).
- apply fold_equal; auto with set.
- apply fold_init; auto.
- apply fold_1; auto with set.
- Qed.
-
- Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') ->
- eqA (fold f (union s s') i) (fold f s (fold f s' i)).
- Proof.
- intros.
- trans_st (fold f (union s s') (fold f (inter s s') i)).
- apply fold_init; auto.
- sym_st; apply fold_1; auto with set.
- unfold Empty; intro a; generalize (H a); set_iff; tauto.
- apply fold_union_inter; auto.
- Qed.
-
- End Fold_3.
- End Fold.
-
- Lemma fold_plus :
- forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
- Proof.
- assert (st := gen_st nat).
- assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto).
- assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto).
- intros s p; pattern s; apply set_induction; clear s; intros.
- rewrite (fold_1 st p (fun _ => S) H).
- rewrite (fold_1 st 0 (fun _ => S) H); trivial.
- assert (forall p s', Add x s s' -> fold (fun _ => S) s' p = S (fold (fun _ => S) s p)).
- change S with ((fun _ => S) x).
- intros; apply fold_2; auto.
- rewrite H2; auto.
- rewrite (H2 0); auto.
- rewrite H.
- simpl; auto.
- Qed.
-
- (** properties of [cardinal] *)
-
- Lemma empty_cardinal : cardinal empty = 0.
- Proof.
- rewrite cardinal_fold; apply fold_1; auto.
- Qed.
-
- Hint Immediate empty_cardinal cardinal_1 : set.
-
- Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
- Proof.
- intros.
- rewrite (singleton_equal_add x).
- replace 0 with (cardinal empty); auto with set.
- apply cardinal_2 with x; auto with set.
- Qed.
-
- Hint Resolve singleton_cardinal: set.
-
- Lemma diff_inter_cardinal :
- forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
- Proof.
- intros; do 3 rewrite cardinal_fold.
- rewrite <- fold_plus.
- apply fold_diff_inter with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma union_cardinal:
- forall s s', (forall x, ~In x s\/~In x s') ->
- cardinal (union s s')=cardinal s+cardinal s'.
- Proof.
- intros; do 3 rewrite cardinal_fold.
- rewrite <- fold_plus.
- apply fold_union; auto.
- Qed.
-
- Lemma subset_cardinal :
- forall s s', s[<=]s' -> cardinal s <= cardinal s' .
- Proof.
- intros.
- rewrite <- (diff_inter_cardinal s' s).
- rewrite (inter_sym s' s).
- rewrite (inter_subset_equal H); auto with arith.
- Qed.
-
- Lemma subset_cardinal_lt :
- forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
- Proof.
- intros.
- rewrite <- (diff_inter_cardinal s' s).
- rewrite (inter_sym s' s).
- rewrite (inter_subset_equal H).
- generalize (@cardinal_inv_1 (diff s' s)).
- destruct (cardinal (diff s' s)).
- intro H2; destruct (H2 (refl_equal _) x).
- set_iff; auto.
- intros _.
- change (0 + cardinal s < S n + cardinal s).
- apply Plus.plus_lt_le_compat; auto with arith.
- Qed.
-
- Theorem union_inter_cardinal :
- forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
- Proof.
- intros.
- do 4 rewrite cardinal_fold.
- do 2 rewrite <- fold_plus.
- apply fold_union_inter with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma union_cardinal_inter :
- forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
- Proof.
- intros.
- rewrite <- union_inter_cardinal.
- rewrite Plus.plus_comm.
- auto with arith.
- Qed.
-
- Lemma union_cardinal_le :
- forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
- Proof.
- intros; generalize (union_inter_cardinal s s').
- intros; rewrite <- H; auto with arith.
- Qed.
-
- Lemma add_cardinal_1 :
- forall s x, In x s -> cardinal (add x s) = cardinal s.
- Proof.
- auto with set.
- Qed.
-
- Lemma add_cardinal_2 :
- forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
- Proof.
- intros.
- do 2 rewrite cardinal_fold.
- change S with ((fun _ => S) x);
- apply fold_add with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma remove_cardinal_1 :
- forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
- Proof.
- intros.
- do 2 rewrite cardinal_fold.
- change S with ((fun _ =>S) x).
- apply remove_fold_1 with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma remove_cardinal_2 :
- forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
- Proof.
- auto with set.
- Qed.
-
- Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
-
-End Properties.