summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetProperties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetProperties.v')
-rw-r--r--theories/FSets/FSetProperties.v224
1 files changed, 111 insertions, 113 deletions
diff --git a/theories/FSets/FSetProperties.v b/theories/FSets/FSetProperties.v
index 8dc7fbd9..84c26dac 100644
--- a/theories/FSets/FSetProperties.v
+++ b/theories/FSets/FSetProperties.v
@@ -6,14 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetProperties.v 11720 2008-12-28 07:12:15Z letouzey $ *)
+(* $Id$ *)
(** * Finite sets library *)
(** This functor derives additional properties from [FSetInterface.S].
- Contrary to the functor in [FSetEqProperties] it uses
+ Contrary to the functor in [FSetEqProperties] it uses
predicates over sets instead of sets operations, i.e.
- [In x s] instead of [mem x s=true],
+ [In x s] instead of [mem x s=true],
[Equal s s'] instead of [equal s s'=true], etc. *)
Require Export FSetInterface.
@@ -21,7 +21,7 @@ Require Import DecidableTypeEx FSetFacts FSetDecide.
Set Implicit Arguments.
Unset Strict Implicit.
-Hint Unfold transpose compat_op.
+Hint Unfold transpose compat_op Proper respectful.
Hint Extern 1 (Equivalence _) => constructor; congruence.
(** First, a functor for Weak Sets in functorial version. *)
@@ -47,7 +47,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
fsetdec.
fsetdec.
Qed.
-
+
Ltac expAdd := repeat rewrite Add_Equal.
Section BasicProperties.
@@ -64,7 +64,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.
Proof. fsetdec. Qed.
- Lemma subset_refl : s[<=]s.
+ Lemma subset_refl : s[<=]s.
Proof. fsetdec. Qed.
Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
@@ -84,7 +84,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
Proof. fsetdec. Qed.
-
+
Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
Proof. fsetdec. Qed.
@@ -93,7 +93,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
Proof. fsetdec. Qed.
-
+
Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
Proof. intuition fsetdec. Qed.
@@ -105,7 +105,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma add_equal : In x s -> add x s [=] s.
Proof. fsetdec. Qed.
-
+
Lemma add_add : add x (add x' s) [=] add x' (add x s).
Proof. fsetdec. Qed.
@@ -149,11 +149,11 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma union_add : union (add x s) s' [=] add x (union s s').
Proof. fsetdec. Qed.
- Lemma union_remove_add_1 :
+ Lemma union_remove_add_1 :
union (remove x s) (add x s') [=] union (add x s) (remove x s').
Proof. fsetdec. Qed.
- Lemma union_remove_add_2 : In x s ->
+ Lemma union_remove_add_2 : In x s ->
union (remove x s) (add x s') [=] union s s'.
Proof. fsetdec. Qed.
@@ -167,10 +167,10 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Proof. fsetdec. Qed.
Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
- Proof. fsetdec. Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
- Proof. fsetdec. Qed.
+ Proof. fsetdec. Qed.
Lemma empty_union_1 : Empty s -> union s s' [=] s'.
Proof. fsetdec. Qed.
@@ -178,7 +178,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma empty_union_2 : Empty s -> union s' s [=] s'.
Proof. fsetdec. Qed.
- Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
+ Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
Proof. fsetdec. Qed.
Lemma inter_sym : inter s s' [=] inter s' s.
@@ -224,7 +224,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
Proof. fsetdec. Qed.
- Lemma empty_diff_1 : Empty s -> Empty (diff s s').
+ Lemma empty_diff_1 : Empty s -> Empty (diff s s').
Proof. fsetdec. Qed.
Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
@@ -240,7 +240,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
remove x s [=] diff s (singleton x).
Proof. fsetdec. Qed.
- Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
+ Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
Proof. fsetdec. Qed.
Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
@@ -249,19 +249,19 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma Add_add : Add x s (add x s).
Proof. expAdd; fsetdec. Qed.
- Lemma Add_remove : In x s -> Add x (remove x s) s.
+ Lemma Add_remove : In x s -> Add x (remove x s) s.
Proof. expAdd; fsetdec. Qed.
Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
- Proof. expAdd; fsetdec. Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma inter_Add :
In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
- Proof. expAdd; fsetdec. Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma union_Equal :
In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
- Proof. expAdd; fsetdec. Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma inter_Add_2 :
~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
@@ -270,16 +270,16 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
End BasicProperties.
Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
- Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
- subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
+ Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
+ subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
- remove_equal singleton_equal_add union_subset_equal union_equal_1
- union_equal_2 union_assoc add_union_singleton union_add union_subset_1
+ remove_equal singleton_equal_add union_subset_equal union_equal_1
+ union_equal_2 union_assoc add_union_singleton union_add union_subset_1
union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
- empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
- empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
- inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
+ empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
+ empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
+ inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
Equal_remove add_add : set.
@@ -358,9 +358,9 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
assert (Pstep' : forall x a s' s'', InA x l -> ~In x s' -> Add x s' s'' ->
P s' a -> P s'' (f x a)).
intros; eapply Pstep; eauto.
- rewrite elements_iff, <- InA_rev; auto.
+ rewrite elements_iff, <- InA_rev; auto with *.
assert (Hdup : NoDup l) by
- (unfold l; eauto using elements_3w, NoDupA_rev).
+ (unfold l; eauto using elements_3w, NoDupA_rev with *).
assert (Hsame : forall x, In x s <-> InA x l) by
(unfold l; intros; rewrite elements_iff, InA_rev; intuition).
clear Pstep; clearbody l; revert s Hsame; induction l.
@@ -429,7 +429,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
do 2 rewrite fold_1, <- fold_left_rev_right.
set (l:=rev (elements s)).
assert (Rstep' : forall x a b, InA x l -> R a b -> R (f x a) (g x b)) by
- (intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto).
+ (intros; apply Rstep; auto; rewrite elements_iff, <- InA_rev; auto with *).
clearbody l; clear Rstep s.
induction l; simpl; auto.
Qed.
@@ -481,8 +481,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
fold f s i = fold_right f i l.
Proof.
intros; exists (rev (elements s)); split.
- apply NoDupA_rev; auto with set.
- exact E.eq_trans.
+ apply NoDupA_rev; auto with *.
split; intros.
rewrite elements_iff; do 2 rewrite InA_alt.
split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
@@ -504,7 +503,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
generalize H H2; clear H H2; case l; simpl; intros.
reflexivity.
elim (H e).
- elim (H2 e); intuition.
+ elim (H2 e); intuition.
Qed.
Lemma fold_2 :
@@ -514,17 +513,16 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
transpose eqA f ->
~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
Proof.
- intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
+ intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
- apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
- eauto.
+ apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto with *.
rewrite <- Hl1; auto.
- intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
+ intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
rewrite (H2 a); intuition.
Qed.
- (** In fact, [fold] on empty sets is more than equivalent to
+ (** In fact, [fold] on empty sets is more than equivalent to
the initial element, it is Leibniz-equal to it. *)
Lemma fold_1b :
@@ -541,26 +539,27 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
- Lemma fold_commutes : forall i s x,
+ Lemma fold_commutes : forall i s x,
eqA (fold f s (f x i)) (f x (fold f s i)).
Proof.
intros.
apply fold_rel with (R:=fun u v => eqA u (f x v)); intros.
reflexivity.
- transitivity (f x0 (f x b)); auto.
+ transitivity (f x0 (f x b)); auto. apply Comp; auto with *.
Qed.
(** ** Fold is a morphism *)
- Lemma fold_init : forall i i' s, eqA i i' ->
+ Lemma fold_init : forall i i' s, eqA i i' ->
eqA (fold f s i) (fold f s i').
Proof.
intros. apply fold_rel with (R:=eqA); auto.
+ intros; apply Comp; auto with *.
Qed.
- Lemma fold_equal :
+ Lemma fold_equal :
forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
- Proof.
+ Proof.
intros i s; pattern s; apply set_induction; clear s; intros.
transitivity i.
apply fold_1; auto.
@@ -576,23 +575,23 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
(** ** Fold and other set operators *)
Lemma fold_empty : forall i, fold f empty i = i.
- Proof.
+ Proof.
intros i; apply fold_1b; auto with set.
Qed.
- Lemma fold_add : forall i s x, ~In x s ->
+ Lemma fold_add : forall i s x, ~In x s ->
eqA (fold f (add x s) i) (f x (fold f s i)).
- Proof.
+ Proof.
intros; apply fold_2 with (eqA := eqA); auto with set.
Qed.
- Lemma add_fold : forall i s x, In x s ->
+ Lemma add_fold : forall i s x, In x s ->
eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply fold_equal; auto with set.
Qed.
- Lemma remove_fold_1: forall i s x, In x s ->
+ Lemma remove_fold_1: forall i s x, In x s ->
eqA (f x (fold f (remove x s) i)) (fold f s i).
Proof.
intros.
@@ -600,7 +599,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply fold_2 with (eqA:=eqA); auto with set.
Qed.
- Lemma remove_fold_2: forall i s x, ~In x s ->
+ Lemma remove_fold_2: forall i s x, ~In x s ->
eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros.
@@ -620,7 +619,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
symmetry; apply fold_1; auto.
rename s'0 into s''.
destruct (In_dec x s').
- (* In x s' *)
+ (* In x s' *)
transitivity (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
apply fold_init; auto.
apply fold_2 with (eqA:=eqA); auto with set.
@@ -646,7 +645,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
symmetry; apply fold_2 with (eqA:=eqA); auto.
Qed.
- Lemma fold_diff_inter : forall i s s',
+ Lemma fold_diff_inter : forall i s s',
eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
Proof.
intros.
@@ -659,7 +658,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply fold_1; auto with set.
Qed.
- Lemma fold_union: forall i s s',
+ Lemma fold_union: forall i s s',
(forall x, ~(In x s/\In x s')) ->
eqA (fold f (union s s') i) (fold f s (fold f s' i)).
Proof.
@@ -696,9 +695,9 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
Lemma cardinal_0 :
forall s, exists l : list elt,
NoDupA E.eq l /\
- (forall x : elt, In x s <-> InA E.eq x l) /\
+ (forall x : elt, In x s <-> InA E.eq x l) /\
cardinal s = length l.
- Proof.
+ Proof.
intros; exists (elements s); intuition; apply cardinal_1.
Qed.
@@ -724,32 +723,32 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
destruct (elements s); intuition; discriminate.
Qed.
- Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
+ Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
Proof.
- intros; rewrite cardinal_Empty; auto.
+ intros; rewrite cardinal_Empty; auto.
Qed.
Hint Resolve cardinal_inv_1.
-
+
Lemma cardinal_inv_2 :
forall s n, cardinal s = S n -> { x : elt | In x s }.
- Proof.
+ Proof.
intros; rewrite M.cardinal_1 in H.
generalize (elements_2 (s:=s)).
- destruct (elements s); try discriminate.
+ destruct (elements s); try discriminate.
exists e; auto.
Qed.
Lemma cardinal_inv_2b :
forall s, cardinal s <> 0 -> { x : elt | In x s }.
Proof.
- intro; generalize (@cardinal_inv_2 s); destruct cardinal;
+ intro; generalize (@cardinal_inv_2 s); destruct cardinal;
[intuition|eauto].
Qed.
(** ** Cardinal is a morphism *)
Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
- Proof.
+ Proof.
symmetry.
remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H.
induction n; intros.
@@ -794,8 +793,8 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply fold_diff_inter with (eqA:=@Logic.eq nat); auto.
Qed.
- Lemma union_cardinal:
- forall s s', (forall x, ~(In x s/\In x s')) ->
+ Lemma union_cardinal:
+ forall s s', (forall x, ~(In x s/\In x s')) ->
cardinal (union s s')=cardinal s+cardinal s'.
Proof.
intros; do 3 rewrite cardinal_fold.
@@ -803,7 +802,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply fold_union; auto.
Qed.
- Lemma subset_cardinal :
+ Lemma subset_cardinal :
forall s s', s[<=]s' -> cardinal s <= cardinal s' .
Proof.
intros.
@@ -812,9 +811,9 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
rewrite (inter_subset_equal H); auto with arith.
Qed.
- Lemma subset_cardinal_lt :
+ Lemma subset_cardinal_lt :
forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
- Proof.
+ Proof.
intros.
rewrite <- (diff_inter_cardinal s' s).
rewrite (inter_sym s' s).
@@ -826,7 +825,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
intros _.
change (0 + cardinal s < S n + cardinal s).
apply Plus.plus_lt_le_compat; auto with arith.
- Qed.
+ Qed.
Theorem union_inter_cardinal :
forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
@@ -837,7 +836,7 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply fold_union_inter with (eqA:=@Logic.eq nat); auto.
Qed.
- Lemma union_cardinal_inter :
+ Lemma union_cardinal_inter :
forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
Proof.
intros.
@@ -846,17 +845,17 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
auto with arith.
Qed.
- Lemma union_cardinal_le :
+ Lemma union_cardinal_le :
forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
Proof.
intros; generalize (union_inter_cardinal s s').
intros; rewrite <- H; auto with arith.
Qed.
- Lemma add_cardinal_1 :
+ Lemma add_cardinal_1 :
forall s x, In x s -> cardinal (add x s) = cardinal s.
Proof.
- auto with set.
+ auto with set.
Qed.
Lemma add_cardinal_2 :
@@ -877,9 +876,9 @@ Module WProperties_fun (Import E : DecidableType)(M : WSfun E).
apply remove_fold_1 with (eqA:=@Logic.eq nat); auto.
Qed.
- Lemma remove_cardinal_2 :
+ Lemma remove_cardinal_2 :
forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
- Proof.
+ Proof.
auto with set.
Qed.
@@ -910,7 +909,7 @@ Module OrdProperties (M:S).
Lemma sort_equivlistA_eqlistA : forall l l' : list elt,
sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'.
Proof.
- apply SortA_equivlistA_eqlistA; eauto.
+ apply SortA_equivlistA_eqlistA; eauto with *.
Qed.
Definition gtb x y := match E.compare x y with GT _ => true | _ => false end.
@@ -929,7 +928,7 @@ Module OrdProperties (M:S).
intros; unfold leb, gtb; destruct (E.compare x y); intuition; try discriminate; ME.order.
Qed.
- Lemma gtb_compat : forall x, compat_bool E.eq (gtb x).
+ Lemma gtb_compat : forall x, Proper (E.eq==>Logic.eq) (gtb x).
Proof.
red; intros x a b H.
generalize (gtb_1 x a)(gtb_1 x b); destruct (gtb x a); destruct (gtb x b); auto.
@@ -943,89 +942,88 @@ Module OrdProperties (M:S).
rewrite <- H1; auto.
Qed.
- Lemma leb_compat : forall x, compat_bool E.eq (leb x).
+ Lemma leb_compat : forall x, Proper (E.eq==>Logic.eq) (leb x).
Proof.
red; intros x a b H; unfold leb.
f_equal; apply gtb_compat; auto.
Qed.
Hint Resolve gtb_compat leb_compat.
- Lemma elements_split : forall x s,
+ Lemma elements_split : forall x s,
elements s = elements_lt x s ++ elements_ge x s.
Proof.
unfold elements_lt, elements_ge, leb; intros.
- eapply (@filter_split _ E.eq); eauto with set. ME.order. ME.order. ME.order.
+ eapply (@filter_split _ E.eq _ E.lt); auto with *.
intros.
rewrite gtb_1 in H.
assert (~E.lt y x).
- unfold gtb in *; destruct (E.compare x y); intuition; try discriminate; ME.order.
+ unfold gtb in *; destruct (E.compare x y); intuition;
+ try discriminate; ME.order.
ME.order.
Qed.
- Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
- eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
+ Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
Proof.
intros; unfold elements_ge, elements_lt.
apply sort_equivlistA_eqlistA; auto with set.
- apply (@SortA_app _ E.eq); auto.
- apply (@filter_sort _ E.eq); auto with set; eauto with set.
+ apply (@SortA_app _ E.eq); auto with *.
+ apply (@filter_sort _ E.eq); auto with *.
constructor; auto.
- apply (@filter_sort _ E.eq); auto with set; eauto with set.
- rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); eauto with set).
+ apply (@filter_sort _ E.eq); auto with *.
+ rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); eauto with *).
intros.
- rewrite filter_InA in H1; auto; destruct H1.
+ rewrite filter_InA in H1; auto with *; destruct H1.
rewrite leb_1 in H2.
rewrite <- elements_iff in H1.
assert (~E.eq x y).
contradict H; rewrite H; auto.
ME.order.
intros.
- rewrite filter_InA in H1; auto; destruct H1.
+ rewrite filter_InA in H1; auto with *; destruct H1.
rewrite gtb_1 in H3.
inversion_clear H2.
ME.order.
- rewrite filter_InA in H4; auto; destruct H4.
+ rewrite filter_InA in H4; auto with *; destruct H4.
rewrite leb_1 in H4.
ME.order.
red; intros a.
- rewrite InA_app_iff; rewrite InA_cons.
- do 2 (rewrite filter_InA; auto).
- do 2 rewrite <- elements_iff.
- rewrite leb_1; rewrite gtb_1.
- rewrite (H0 a); intuition.
+ rewrite InA_app_iff, InA_cons, !filter_InA, <-elements_iff,
+ leb_1, gtb_1, (H0 a) by auto with *.
+ intuition.
destruct (E.compare a x); intuition.
- right; right; split; auto.
+ right; right; split; auto with *.
ME.order.
Qed.
Definition Above x s := forall y, In y s -> E.lt y x.
Definition Below x s := forall y, In y s -> E.lt x y.
- Lemma elements_Add_Above : forall s s' x,
- Above x s -> Add x s s' ->
+ Lemma elements_Add_Above : forall s s' x,
+ Above x s -> Add x s s' ->
eqlistA E.eq (elements s') (elements s ++ x::nil).
Proof.
intros.
- apply sort_equivlistA_eqlistA; auto with set.
- apply (@SortA_app _ E.eq); auto with set.
+ apply sort_equivlistA_eqlistA; auto with *.
+ apply (@SortA_app _ E.eq); auto with *.
intros.
inversion_clear H2.
rewrite <- elements_iff in H1.
apply ME.lt_eq with x; auto.
inversion H3.
red; intros a.
- rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
+ rewrite InA_app_iff, InA_cons, InA_nil by auto with *.
do 2 rewrite <- elements_iff; rewrite (H0 a); intuition.
Qed.
- Lemma elements_Add_Below : forall s s' x,
- Below x s -> Add x s s' ->
+ Lemma elements_Add_Below : forall s s' x,
+ Below x s -> Add x s s' ->
eqlistA E.eq (elements s') (x::elements s).
Proof.
intros.
- apply sort_equivlistA_eqlistA; auto with set.
+ apply sort_equivlistA_eqlistA; auto with *.
change (sort E.lt ((x::nil) ++ elements s)).
- apply (@SortA_app _ E.eq); auto with set.
+ apply (@SortA_app _ E.eq); auto with *.
intros.
inversion_clear H1.
rewrite <- elements_iff in H2.
@@ -1036,7 +1034,7 @@ Module OrdProperties (M:S).
do 2 rewrite <- elements_iff; rewrite (H0 a); intuition.
Qed.
- (** Two other induction principles on sets: we can be more restrictive
+ (** Two other induction principles on sets: we can be more restrictive
on the element we add at each step. *)
Lemma set_induction_max :
@@ -1117,15 +1115,15 @@ Module OrdProperties (M:S).
apply elements_Add_Below; auto.
Qed.
- (** The following results have already been proved earlier,
+ (** The following results have already been proved earlier,
but we can now prove them with one hypothesis less:
no need for [(transpose eqA f)]. *)
- Section FoldOpt.
+ Section FoldOpt.
Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f).
- Lemma fold_equal :
+ Lemma fold_equal :
forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
Proof.
intros; do 2 rewrite M.fold_1.
@@ -1136,13 +1134,13 @@ Module OrdProperties (M:S).
red; intro a; do 2 rewrite <- elements_iff; auto.
Qed.
- Lemma add_fold : forall i s x, In x s ->
+ Lemma add_fold : forall i s x, In x s ->
eqA (fold f (add x s) i) (fold f s i).
Proof.
intros; apply fold_equal; auto with set.
Qed.
- Lemma remove_fold_2: forall i s x, ~In x s ->
+ Lemma remove_fold_2: forall i s x, ~In x s ->
eqA (fold f (remove x s) i) (fold f s i).
Proof.
intros.
@@ -1153,16 +1151,16 @@ Module OrdProperties (M:S).
(** An alternative version of [choose_3] *)
- Lemma choose_equal : forall s s', Equal s s' ->
- match choose s, choose s' with
+ Lemma choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
| Some x, Some x' => E.eq x x'
| None, None => True
| _, _ => False
end.
Proof.
- intros s s' H;
+ intros s s' H;
generalize (@choose_1 s)(@choose_2 s)
- (@choose_1 s')(@choose_2 s')(@choose_3 s s');
+ (@choose_1 s')(@choose_2 s')(@choose_3 s s');
destruct (choose s); destruct (choose s'); simpl; intuition.
apply H5 with e; rewrite <-H; auto.
apply H5 with e; rewrite H; auto.