summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetFullAVL.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetFullAVL.v')
-rw-r--r--theories/FSets/FSetFullAVL.v1133
1 files changed, 0 insertions, 1133 deletions
diff --git a/theories/FSets/FSetFullAVL.v b/theories/FSets/FSetFullAVL.v
deleted file mode 100644
index a2d8e681..00000000
--- a/theories/FSets/FSetFullAVL.v
+++ /dev/null
@@ -1,1133 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* Finite sets library.
- * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
- * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
- * 91405 Orsay, France *)
-
-(* $Id: FSetFullAVL.v 11699 2008-12-18 11:49:08Z letouzey $ *)
-
-(** * FSetFullAVL
-
- This file contains some complements to [FSetAVL].
-
- - Functor [AvlProofs] proves that trees of [FSetAVL] are not only
- binary search trees, but moreover well-balanced ones. This is done
- by proving that all operations preserve the balancing.
-
- - Functor [OcamlOps] contains variants of [union], [subset],
- [compare] and [equal] that are faithful to the original ocaml codes,
- while the versions in FSetAVL have been adapted to perform only
- structural recursive code.
-
- - Finally, we pack the previous elements in a [Make] functor
- similar to the one of [FSetAVL], but richer.
-*)
-
-Require Import Recdef FSetInterface FSetList ZArith Int FSetAVL.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Module AvlProofs (Import I:Int)(X:OrderedType).
-Module Import Raw := Raw I X.
-Import Raw.Proofs.
-Module Import II := MoreInt I.
-Open Local Scope pair_scope.
-Open Local Scope Int_scope.
-
-(** * AVL trees *)
-
-(** [avl s] : [s] is a properly balanced AVL tree,
- i.e. for any node the heights of the two children
- differ by at most 2 *)
-
-Inductive avl : tree -> Prop :=
- | RBLeaf : avl Leaf
- | RBNode : forall x l r h, avl l -> avl r ->
- -(2) <= height l - height r <= 2 ->
- h = max (height l) (height r) + 1 ->
- avl (Node l x r h).
-
-(** * Automation and dedicated tactics *)
-
-Hint Constructors avl.
-
-(** A tactic for cleaning hypothesis after use of functional induction. *)
-
-Ltac clearf :=
- match goal with
- | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf
- | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf
- | _ => idtac
- end.
-
-(** Tactics about [avl] *)
-
-Lemma height_non_negative : forall s : tree, avl s -> height s >= 0.
-Proof.
- induction s; simpl; intros; auto with zarith.
- inv avl; intuition; omega_max.
-Qed.
-Implicit Arguments height_non_negative.
-
-(** When [H:avl r], typing [avl_nn H] or [avl_nn r] adds [height r>=0] *)
-
-Ltac avl_nn_hyp H :=
- let nz := fresh "nz" in assert (nz := height_non_negative H).
-
-Ltac avl_nn h :=
- let t := type of h in
- match type of t with
- | Prop => avl_nn_hyp h
- | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
- end.
-
-(* Repeat the previous tactic.
- Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
-
-Ltac avl_nns :=
- match goal with
- | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
- | _ => idtac
- end.
-
-(** Results about [height] *)
-
-Lemma height_0 : forall s, avl s -> height s = 0 -> s = Leaf.
-Proof.
- destruct 1; intuition; simpl in *.
- avl_nns; simpl in *; elimtype False; omega_max.
-Qed.
-
-(** * Results about [avl] *)
-
-Lemma avl_node :
- forall x l r, avl l -> avl r ->
- -(2) <= height l - height r <= 2 ->
- avl (Node l x r (max (height l) (height r) + 1)).
-Proof.
- intros; auto.
-Qed.
-Hint Resolve avl_node.
-
-
-(** empty *)
-
-Lemma empty_avl : avl empty.
-Proof.
- auto.
-Qed.
-
-(** singleton *)
-
-Lemma singleton_avl : forall x : elt, avl (singleton x).
-Proof.
- unfold singleton; intro.
- constructor; auto; try red; simpl; omega_max.
-Qed.
-
-(** create *)
-
-Lemma create_avl :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- avl (create l x r).
-Proof.
- unfold create; auto.
-Qed.
-
-Lemma create_height :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (create l x r) = max (height l) (height r) + 1.
-Proof.
- unfold create; auto.
-Qed.
-
-(** bal *)
-
-Lemma bal_avl : forall l x r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 -> avl (bal l x r).
-Proof.
- intros l x r; functional induction bal l x r; intros; clearf;
- inv avl; simpl in *;
- match goal with |- avl (assert_false _ _ _) => avl_nns
- | _ => repeat apply create_avl; simpl in *; auto
- end; omega_max.
-Qed.
-
-Lemma bal_height_1 : forall l x r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 ->
- 0 <= height (bal l x r) - max (height l) (height r) <= 1.
-Proof.
- intros l x r; functional induction bal l x r; intros; clearf;
- inv avl; avl_nns; simpl in *; omega_max.
-Qed.
-
-Lemma bal_height_2 :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (bal l x r) == max (height l) (height r) +1.
-Proof.
- intros l x r; functional induction bal l x r; intros; clearf;
- inv avl; simpl in *; omega_max.
-Qed.
-
-Ltac omega_bal := match goal with
- | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] =>
- generalize (bal_height_1 x H H') (bal_height_2 x H H');
- omega_max
- end.
-
-(** add *)
-
-Lemma add_avl_1 : forall s x, avl s ->
- avl (add x s) /\ 0 <= height (add x s) - height s <= 1.
-Proof.
- intros s x; functional induction (add x s); subst;intros; inv avl; simpl in *.
- intuition; try constructor; simpl; auto; try omega_max.
- (* LT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
- (* EQ *)
- intuition; omega_max.
- (* GT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
-Qed.
-
-Lemma add_avl : forall s x, avl s -> avl (add x s).
-Proof.
- intros; destruct (add_avl_1 x H); auto.
-Qed.
-Hint Resolve add_avl.
-
-(** join *)
-
-Lemma join_avl_1 : forall l x r, avl l -> avl r -> avl (join l x r) /\
- 0<= height (join l x r) - max (height l) (height r) <= 1.
-Proof.
- join_tac.
-
- split; simpl; auto.
- destruct (add_avl_1 x H0).
- avl_nns; omega_max.
- set (l:=Node ll lx lr lh) in *.
- split; auto.
- destruct (add_avl_1 x H).
- simpl (height Leaf).
- avl_nns; omega_max.
-
- inversion_clear H.
- assert (height (Node rl rx rr rh) = rh); auto.
- set (r := Node rl rx rr rh) in *; clearbody r.
- destruct (Hlr x r H2 H0); clear Hrl Hlr.
- set (j := join lr x r) in *; clearbody j.
- simpl.
- assert (-(3) <= height ll - height j <= 3) by omega_max.
- split.
- apply bal_avl; auto.
- omega_bal.
-
- inversion_clear H0.
- assert (height (Node ll lx lr lh) = lh); auto.
- set (l := Node ll lx lr lh) in *; clearbody l.
- destruct (Hrl H H1); clear Hrl Hlr.
- set (j := join l x rl) in *; clearbody j.
- simpl.
- assert (-(3) <= height j - height rr <= 3) by omega_max.
- split.
- apply bal_avl; auto.
- omega_bal.
-
- clear Hrl Hlr.
- assert (height (Node ll lx lr lh) = lh); auto.
- assert (height (Node rl rx rr rh) = rh); auto.
- set (l := Node ll lx lr lh) in *; clearbody l.
- set (r := Node rl rx rr rh) in *; clearbody r.
- assert (-(2) <= height l - height r <= 2) by omega_max.
- split.
- apply create_avl; auto.
- rewrite create_height; auto; omega_max.
-Qed.
-
-Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r).
-Proof.
- intros; destruct (join_avl_1 x H H0); auto.
-Qed.
-Hint Resolve join_avl.
-
-(** remove_min *)
-
-Lemma remove_min_avl_1 : forall l x r h, avl (Node l x r h) ->
- avl (remove_min l x r)#1 /\
- 0 <= height (Node l x r h) - height (remove_min l x r)#1 <= 1.
-Proof.
- intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros.
- inv avl; simpl in *; split; auto.
- avl_nns; omega_max.
- inversion_clear H.
- rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto.
- split; simpl in *.
- apply bal_avl; auto; omega_max.
- omega_bal.
-Qed.
-
-Lemma remove_min_avl : forall l x r h, avl (Node l x r h) ->
- avl (remove_min l x r)#1.
-Proof.
- intros; destruct (remove_min_avl_1 H); auto.
-Qed.
-
-(** merge *)
-
-Lemma merge_avl_1 : forall s1 s2, avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 ->
- avl (merge s1 s2) /\
- 0<= height (merge s1 s2) - max (height s1) (height s2) <=1.
-Proof.
- intros s1 s2; functional induction (merge s1 s2); intros;
- try factornode _x _x0 _x1 _x2 as s1.
- simpl; split; auto; avl_nns; omega_max.
- simpl; split; auto; avl_nns; simpl in *; omega_max.
- generalize (remove_min_avl_1 H0).
- rewrite e1; destruct 1.
- split.
- apply bal_avl; auto.
- simpl; omega_max.
- simpl in *; omega_bal.
-Qed.
-
-Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
-Proof.
- intros; destruct (merge_avl_1 H H0 H1); auto.
-Qed.
-
-
-(** remove *)
-
-Lemma remove_avl_1 : forall s x, avl s ->
- avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1.
-Proof.
- intros s x; functional induction (remove x s); intros.
- intuition; omega_max.
- (* LT *)
- inv avl.
- destruct (IHt H0).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
- (* EQ *)
- inv avl.
- generalize (merge_avl_1 H0 H1 H2).
- intuition omega_max.
- (* GT *)
- inv avl.
- destruct (IHt H1).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
-Qed.
-
-Lemma remove_avl : forall s x, avl s -> avl (remove x s).
-Proof.
- intros; destruct (remove_avl_1 x H); auto.
-Qed.
-Hint Resolve remove_avl.
-
-(** concat *)
-
-Lemma concat_avl : forall s1 s2, avl s1 -> avl s2 -> avl (concat s1 s2).
-Proof.
- intros s1 s2; functional induction (concat s1 s2); auto.
- intros; apply join_avl; auto.
- generalize (remove_min_avl H0); rewrite e1; simpl; auto.
-Qed.
-Hint Resolve concat_avl.
-
-(** split *)
-
-Lemma split_avl : forall s x, avl s ->
- avl (split x s)#l /\ avl (split x s)#r.
-Proof.
- intros s x; functional induction (split x s); simpl; auto.
- rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
- simpl; inversion_clear 1; auto.
- rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
-Qed.
-
-(** inter *)
-
-Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2).
-Proof.
- intros s1 s2; functional induction inter s1 s2; auto; intros A1 A2;
- generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
- inv avl; auto.
-Qed.
-
-(** diff *)
-
-Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2).
-Proof.
- intros s1 s2; functional induction diff s1 s2; auto; intros A1 A2;
- generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
- inv avl; auto.
-Qed.
-
-(** union *)
-
-Lemma union_avl : forall s1 s2, avl s1 -> avl s2 -> avl (union s1 s2).
-Proof.
- intros s1 s2; functional induction union s1 s2; auto; intros A1 A2;
- generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
- inv avl; auto.
-Qed.
-
-(** filter *)
-
-Lemma filter_acc_avl : forall f s acc, avl s -> avl acc ->
- avl (filter_acc f acc s).
-Proof.
- induction s; simpl; auto.
- intros.
- inv avl.
- destruct (f t); auto.
-Qed.
-Hint Resolve filter_acc_avl.
-
-Lemma filter_avl : forall f s, avl s -> avl (filter f s).
-Proof.
- unfold filter; intros; apply filter_acc_avl; auto.
-Qed.
-
-(** partition *)
-
-Lemma partition_acc_avl_1 : forall f s acc, avl s ->
- avl acc#1 -> avl (partition_acc f acc s)#1.
-Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl.
- apply IHs2; auto.
- apply IHs1; auto.
- destruct (f t); simpl; auto.
-Qed.
-
-Lemma partition_acc_avl_2 : forall f s acc, avl s ->
- avl acc#2 -> avl (partition_acc f acc s)#2.
-Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl.
- apply IHs2; auto.
- apply IHs1; auto.
- destruct (f t); simpl; auto.
-Qed.
-
-Lemma partition_avl_1 : forall f s, avl s -> avl (partition f s)#1.
-Proof.
- unfold partition; intros; apply partition_acc_avl_1; auto.
-Qed.
-
-Lemma partition_avl_2 : forall f s, avl s -> avl (partition f s)#2.
-Proof.
- unfold partition; intros; apply partition_acc_avl_2; auto.
-Qed.
-
-End AvlProofs.
-
-
-Module OcamlOps (Import I:Int)(X:OrderedType).
-Module Import AvlProofs := AvlProofs I X.
-Import Raw.
-Import Raw.Proofs.
-Import II.
-Open Local Scope pair_scope.
-Open Local Scope nat_scope.
-
-(** Properties of cardinal *)
-
-Lemma bal_cardinal : forall l x r,
- cardinal (bal l x r) = S (cardinal l + cardinal r).
-Proof.
- intros l x r; functional induction bal l x r; intros; clearf;
- simpl; auto with arith; romega with *.
-Qed.
-
-Lemma add_cardinal : forall x s,
- cardinal (add x s) <= S (cardinal s).
-Proof.
- intros; functional induction add x s; simpl; auto with arith;
- rewrite bal_cardinal; romega with *.
-Qed.
-
-Lemma join_cardinal : forall l x r,
- cardinal (join l x r) <= S (cardinal l + cardinal r).
-Proof.
- join_tac; auto with arith.
- simpl; apply add_cardinal.
- simpl; destruct X.compare; simpl; auto with arith.
- generalize (bal_cardinal (add x ll) lx lr) (add_cardinal x ll);
- romega with *.
- generalize (bal_cardinal ll lx (add x lr)) (add_cardinal x lr);
- romega with *.
- generalize (bal_cardinal ll lx (join lr x (Node rl rx rr rh)))
- (Hlr x (Node rl rx rr rh)); simpl; romega with *.
- simpl S in *; generalize (bal_cardinal (join (Node ll lx lr lh) x rl) rx rr).
- romega with *.
-Qed.
-
-Lemma split_cardinal_1 : forall x s,
- (cardinal (split x s)#l <= cardinal s)%nat.
-Proof.
- intros x s; functional induction split x s; simpl; auto.
- rewrite e1 in IHt; simpl in *.
- romega with *.
- romega with *.
- rewrite e1 in IHt; simpl in *.
- generalize (@join_cardinal l y rl); romega with *.
-Qed.
-
-Lemma split_cardinal_2 : forall x s,
- (cardinal (split x s)#r <= cardinal s)%nat.
-Proof.
- intros x s; functional induction split x s; simpl; auto.
- rewrite e1 in IHt; simpl in *.
- generalize (@join_cardinal rl y r); romega with *.
- romega with *.
- rewrite e1 in IHt; simpl in *; romega with *.
-Qed.
-
-(** * [ocaml_union], an union faithful to the original ocaml code *)
-
-Definition cardinal2 (s:t*t) := (cardinal s#1 + cardinal s#2)%nat.
-
-Ltac ocaml_union_tac :=
- intros; unfold cardinal2; simpl fst in *; simpl snd in *;
- match goal with H: split ?x ?s = _ |- _ =>
- generalize (split_cardinal_1 x s) (split_cardinal_2 x s);
- rewrite H; simpl; romega with *
- end.
-
-Import Logic. (* Unhide eq, otherwise Function complains. *)
-
-Function ocaml_union (s : t * t) { measure cardinal2 s } : t :=
- match s with
- | (Leaf, Leaf) => s#2
- | (Leaf, Node _ _ _ _) => s#2
- | (Node _ _ _ _, Leaf) => s#1
- | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) =>
- if ge_lt_dec h1 h2 then
- if eq_dec h2 1%I then add x2 s#1 else
- let (l2',_,r2') := split x1 s#2 in
- join (ocaml_union (l1,l2')) x1 (ocaml_union (r1,r2'))
- else
- if eq_dec h1 1%I then add x1 s#2 else
- let (l1',_,r1') := split x2 s#1 in
- join (ocaml_union (l1',l2)) x2 (ocaml_union (r1',r2))
- end.
-Proof.
-abstract ocaml_union_tac.
-abstract ocaml_union_tac.
-abstract ocaml_union_tac.
-abstract ocaml_union_tac.
-Defined.
-
-Lemma ocaml_union_in : forall s y,
- bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 ->
- (In y (ocaml_union s) <-> In y s#1 \/ In y s#2).
-Proof.
- intros s; functional induction ocaml_union s; intros y B1 A1 B2 A2;
- simpl fst in *; simpl snd in *; try clear e0 e1.
- intuition_in.
- intuition_in.
- intuition_in.
- (* add x2 s#1 *)
- inv avl.
- rewrite (height_0 H); [ | avl_nn l2; omega_max].
- rewrite (height_0 H0); [ | avl_nn r2; omega_max].
- rewrite add_in; intuition_in.
- (* join (union (l1,l2')) x1 (union (r1,r2')) *)
- generalize
- (split_avl x1 A2) (split_bst x1 B2)
- (split_in_1 x1 y B2) (split_in_2 x1 y B2).
- rewrite e2; simpl.
- destruct 1; destruct 1; inv avl; inv bst.
- rewrite join_in, IHt, IHt0; auto.
- do 2 (intro Eq; rewrite Eq; clear Eq).
- case (X.compare y x1); intuition_in.
- (* add x1 s#2 *)
- inv avl.
- rewrite (height_0 H3); [ | avl_nn l1; omega_max].
- rewrite (height_0 H4); [ | avl_nn r1; omega_max].
- rewrite add_in; auto; intuition_in.
- (* join (union (l1',l2)) x1 (union (r1',r2)) *)
- generalize
- (split_avl x2 A1) (split_bst x2 B1)
- (split_in_1 x2 y B1) (split_in_2 x2 y B1).
- rewrite e2; simpl.
- destruct 1; destruct 1; inv avl; inv bst.
- rewrite join_in, IHt, IHt0; auto.
- do 2 (intro Eq; rewrite Eq; clear Eq).
- case (X.compare y x2); intuition_in.
-Qed.
-
-Lemma ocaml_union_bst : forall s,
- bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> bst (ocaml_union s).
-Proof.
- intros s; functional induction ocaml_union s; intros B1 A1 B2 A2;
- simpl fst in *; simpl snd in *; try clear e0 e1;
- try apply add_bst; auto.
- (* join (union (l1,l2')) x1 (union (r1,r2')) *)
- clear _x _x0; factornode l2 x2 r2 h2 as s2.
- generalize (split_avl x1 A2) (split_bst x1 B2)
- (@split_in_1 s2 x1)(@split_in_2 s2 x1).
- rewrite e2; simpl.
- destruct 1; destruct 1; intros.
- inv bst; inv avl.
- apply join_bst; auto.
- intro y; rewrite ocaml_union_in, H3; intuition_in.
- intro y; rewrite ocaml_union_in, H4; intuition_in.
- (* join (union (l1',l2)) x1 (union (r1',r2)) *)
- clear _x _x0; factornode l1 x1 r1 h1 as s1.
- generalize (split_avl x2 A1) (split_bst x2 B1)
- (@split_in_1 s1 x2)(@split_in_2 s1 x2).
- rewrite e2; simpl.
- destruct 1; destruct 1; intros.
- inv bst; inv avl.
- apply join_bst; auto.
- intro y; rewrite ocaml_union_in, H3; intuition_in.
- intro y; rewrite ocaml_union_in, H4; intuition_in.
-Qed.
-
-Lemma ocaml_union_avl : forall s,
- avl s#1 -> avl s#2 -> avl (ocaml_union s).
-Proof.
- intros s; functional induction ocaml_union s;
- simpl fst in *; simpl snd in *; auto.
- intros A1 A2; generalize (split_avl x1 A2); rewrite e2; simpl.
- inv avl; destruct 1; auto.
- intros A1 A2; generalize (split_avl x2 A1); rewrite e2; simpl.
- inv avl; destruct 1; auto.
-Qed.
-
-Lemma ocaml_union_alt : forall s, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 ->
- Equal (ocaml_union s) (union s#1 s#2).
-Proof.
- red; intros; rewrite ocaml_union_in, union_in; simpl; intuition.
-Qed.
-
-
-(** * [ocaml_subset], a subset faithful to the original ocaml code *)
-
-Function ocaml_subset (s:t*t) { measure cardinal2 s } : bool :=
- match s with
- | (Leaf, _) => true
- | (Node _ _ _ _, Leaf) => false
- | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) =>
- match X.compare x1 x2 with
- | EQ _ => ocaml_subset (l1,l2) && ocaml_subset (r1,r2)
- | LT _ => ocaml_subset (Node l1 x1 Leaf 0%I, l2) && ocaml_subset (r1,s#2)
- | GT _ => ocaml_subset (Node Leaf x1 r1 0%I, r2) && ocaml_subset (l1,s#2)
- end
- end.
-
-Proof.
- intros; unfold cardinal2; simpl; abstract romega with *.
- intros; unfold cardinal2; simpl; abstract romega with *.
- intros; unfold cardinal2; simpl; abstract romega with *.
- intros; unfold cardinal2; simpl; abstract romega with *.
- intros; unfold cardinal2; simpl; abstract romega with *.
- intros; unfold cardinal2; simpl; abstract romega with *.
-Defined.
-
-Lemma ocaml_subset_12 : forall s,
- bst s#1 -> bst s#2 ->
- (ocaml_subset s = true <-> Subset s#1 s#2).
-Proof.
- intros s; functional induction ocaml_subset s; simpl;
- intros B1 B2; try clear e0.
- intuition.
- red; auto; inversion 1.
- split; intros; try discriminate.
- assert (H': In _x0 Leaf) by auto; inversion H'.
- (**)
- simpl in *; inv bst.
- rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
- unfold Subset; intuition_in.
- assert (X.eq a x2) by order; intuition_in.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
- (**)
- simpl in *; inv bst.
- rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
- unfold Subset; intuition_in.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
- (**)
- simpl in *; inv bst.
- rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
- unfold Subset; intuition_in.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
- assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
-Qed.
-
-Lemma ocaml_subset_alt : forall s, bst s#1 -> bst s#2 ->
- ocaml_subset s = subset s#1 s#2.
-Proof.
- intros.
- generalize (ocaml_subset_12 H H0); rewrite <-subset_12 by auto.
- destruct ocaml_subset; destruct subset; intuition.
-Qed.
-
-
-
-(** [ocaml_compare], a compare faithful to the original ocaml code *)
-
-(** termination of [compare_aux] *)
-
-Fixpoint cardinal_e e := match e with
- | End => 0
- | More _ s r => S (cardinal s + cardinal_e r)
- end.
-
-Lemma cons_cardinal_e : forall s e,
- cardinal_e (cons s e) = cardinal s + cardinal_e e.
-Proof.
- induction s; simpl; intros; auto.
- rewrite IHs1; simpl; rewrite <- plus_n_Sm; auto with arith.
-Qed.
-
-Definition cardinal_e_2 e := cardinal_e e#1 + cardinal_e e#2.
-
-Function ocaml_compare_aux
- (e:enumeration*enumeration) { measure cardinal_e_2 e } : comparison :=
- match e with
- | (End,End) => Eq
- | (End,More _ _ _) => Lt
- | (More _ _ _, End) => Gt
- | (More x1 r1 e1, More x2 r2 e2) =>
- match X.compare x1 x2 with
- | EQ _ => ocaml_compare_aux (cons r1 e1, cons r2 e2)
- | LT _ => Lt
- | GT _ => Gt
- end
- end.
-
-Proof.
-intros; unfold cardinal_e_2; simpl;
-abstract (do 2 rewrite cons_cardinal_e; romega with *).
-Defined.
-
-Definition ocaml_compare s1 s2 :=
- ocaml_compare_aux (cons s1 End, cons s2 End).
-
-Lemma ocaml_compare_aux_Cmp : forall e,
- Cmp (ocaml_compare_aux e) (flatten_e e#1) (flatten_e e#2).
-Proof.
- intros e; functional induction ocaml_compare_aux e; simpl; intros;
- auto; try discriminate.
- apply L.eq_refl.
- simpl in *.
- apply cons_Cmp; auto.
- rewrite <- 2 cons_1; auto.
-Qed.
-
-Lemma ocaml_compare_Cmp : forall s1 s2,
- Cmp (ocaml_compare s1 s2) (elements s1) (elements s2).
-Proof.
- unfold ocaml_compare; intros.
- assert (H1:=cons_1 s1 End).
- assert (H2:=cons_1 s2 End).
- simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2.
- apply (@ocaml_compare_aux_Cmp (cons s1 End, cons s2 End)).
-Qed.
-
-Lemma ocaml_compare_alt : forall s1 s2, bst s1 -> bst s2 ->
- ocaml_compare s1 s2 = compare s1 s2.
-Proof.
- intros s1 s2 B1 B2.
- generalize (ocaml_compare_Cmp s1 s2)(compare_Cmp s1 s2).
- unfold Cmp.
- destruct ocaml_compare; destruct compare; auto; intros; elimtype False.
- elim (lt_not_eq B1 B2 H0); auto.
- elim (lt_not_eq B2 B1 H0); auto.
- apply eq_sym; auto.
- elim (lt_not_eq B1 B2 H); auto.
- elim (lt_not_eq B1 B1).
- red; eapply L.lt_trans; eauto.
- apply eq_refl.
- elim (lt_not_eq B2 B1 H); auto.
- apply eq_sym; auto.
- elim (lt_not_eq B1 B2 H0); auto.
- elim (lt_not_eq B1 B1).
- red; eapply L.lt_trans; eauto.
- apply eq_refl.
-Qed.
-
-
-(** * Equality test *)
-
-Definition ocaml_equal s1 s2 : bool :=
- match ocaml_compare s1 s2 with
- | Eq => true
- | _ => false
- end.
-
-Lemma ocaml_equal_1 : forall s1 s2, bst s1 -> bst s2 ->
- Equal s1 s2 -> ocaml_equal s1 s2 = true.
-Proof.
-unfold ocaml_equal; intros s1 s2 B1 B2 E.
-generalize (ocaml_compare_Cmp s1 s2).
-destruct (ocaml_compare s1 s2); auto; intros.
-elim (lt_not_eq B1 B2 H E); auto.
-elim (lt_not_eq B2 B1 H (eq_sym E)); auto.
-Qed.
-
-Lemma ocaml_equal_2 : forall s1 s2,
- ocaml_equal s1 s2 = true -> Equal s1 s2.
-Proof.
-unfold ocaml_equal; intros s1 s2 E.
-generalize (ocaml_compare_Cmp s1 s2);
- destruct ocaml_compare; auto; discriminate.
-Qed.
-
-Lemma ocaml_equal_alt : forall s1 s2, bst s1 -> bst s2 ->
- ocaml_equal s1 s2 = equal s1 s2.
-Proof.
-intros; unfold ocaml_equal, equal; rewrite ocaml_compare_alt; auto.
-Qed.
-
-End OcamlOps.
-
-
-
-(** * Encapsulation
-
- We can implement [S] with balanced binary search trees.
- When compared to [FSetAVL], we maintain here two invariants
- (bst and avl) instead of only bst, which is enough for fulfilling
- the FSet interface.
-
- This encapsulation propose the non-structural variants
- [ocaml_union], [ocaml_subset], [ocaml_compare], [ocaml_equal].
-*)
-
-Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
-
- Module E := X.
- Module Import OcamlOps := OcamlOps I X.
- Import AvlProofs.
- Import Raw.
- Import Raw.Proofs.
-
- Record bbst := Bbst {this :> Raw.t; is_bst : bst this; is_avl : avl this}.
- Definition t := bbst.
- Definition elt := E.t.
-
- Definition In (x : elt) (s : t) : Prop := In x s.
- Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'.
- Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'.
- Definition Empty (s:t) : Prop := forall a : elt, ~ In a s.
- Definition For_all (P : elt -> Prop) (s:t) : Prop := forall x, In x s -> P x.
- Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x.
-
- Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s.
- Proof. intro s; exact (@In_1 s). Qed.
-
- Definition mem (x:elt)(s:t) : bool := mem x s.
-
- Definition empty : t := Bbst empty_bst empty_avl.
- Definition is_empty (s:t) : bool := is_empty s.
- Definition singleton (x:elt) : t :=
- Bbst (singleton_bst x) (singleton_avl x).
- Definition add (x:elt)(s:t) : t :=
- Bbst (add_bst x (is_bst s)) (add_avl x (is_avl s)).
- Definition remove (x:elt)(s:t) : t :=
- Bbst (remove_bst x (is_bst s)) (remove_avl x (is_avl s)).
- Definition inter (s s':t) : t :=
- Bbst (inter_bst (is_bst s) (is_bst s'))
- (inter_avl (is_avl s) (is_avl s')).
- Definition union (s s':t) : t :=
- Bbst (union_bst (is_bst s) (is_bst s'))
- (union_avl (is_avl s) (is_avl s')).
- Definition ocaml_union (s s':t) : t :=
- Bbst (@ocaml_union_bst (s.(this),s'.(this))
- (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (@ocaml_union_avl (s.(this),s'.(this)) (is_avl s) (is_avl s')).
- Definition diff (s s':t) : t :=
- Bbst (diff_bst (is_bst s) (is_bst s'))
- (diff_avl (is_avl s) (is_avl s')).
- Definition elements (s:t) : list elt := elements s.
- Definition min_elt (s:t) : option elt := min_elt s.
- Definition max_elt (s:t) : option elt := max_elt s.
- Definition choose (s:t) : option elt := choose s.
- Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := fold f s.
- Definition cardinal (s:t) : nat := cardinal s.
- Definition filter (f : elt -> bool) (s:t) : t :=
- Bbst (filter_bst f (is_bst s)) (filter_avl f (is_avl s)).
- Definition for_all (f : elt -> bool) (s:t) : bool := for_all f s.
- Definition exists_ (f : elt -> bool) (s:t) : bool := exists_ f s.
- Definition partition (f : elt -> bool) (s:t) : t * t :=
- let p := partition f s in
- (@Bbst (fst p) (partition_bst_1 f (is_bst s))
- (partition_avl_1 f (is_avl s)),
- @Bbst (snd p) (partition_bst_2 f (is_bst s))
- (partition_avl_2 f (is_avl s))).
-
- Definition equal (s s':t) : bool := equal s s'.
- Definition ocaml_equal (s s':t) : bool := ocaml_equal s s'.
- Definition subset (s s':t) : bool := subset s s'.
- Definition ocaml_subset (s s':t) : bool :=
- ocaml_subset (s.(this),s'.(this)).
-
- Definition eq (s s':t) : Prop := Equal s s'.
- Definition lt (s s':t) : Prop := lt s s'.
-
- Definition compare (s s':t) : Compare lt eq s s'.
- Proof.
- intros (s,b,a) (s',b',a').
- generalize (compare_Cmp s s').
- destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
- change (Raw.Equal s s'); auto.
- Defined.
-
- Definition ocaml_compare (s s':t) : Compare lt eq s s'.
- Proof.
- intros (s,b,a) (s',b',a').
- generalize (ocaml_compare_Cmp s s').
- destruct ocaml_compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
- change (Raw.Equal s s'); auto.
- Defined.
-
- Definition eq_dec (s s':t) : { eq s s' } + { ~ eq s s' }.
- Proof.
- intros (s,b,a) (s',b',a'); unfold eq; simpl.
- case_eq (Raw.equal s s'); intro H; [left|right].
- apply equal_2; auto.
- intro H'; rewrite equal_1 in H; auto; discriminate.
- Defined.
-
- (* specs *)
- Section Specs.
- Variable s s' s'': t.
- Variable x y : elt.
-
- Hint Resolve is_bst is_avl.
-
- Lemma mem_1 : In x s -> mem x s = true.
- Proof. exact (mem_1 (is_bst s)). Qed.
- Lemma mem_2 : mem x s = true -> In x s.
- Proof. exact (@mem_2 s x). Qed.
-
- Lemma equal_1 : Equal s s' -> equal s s' = true.
- Proof. exact (equal_1 (is_bst s) (is_bst s')). Qed.
- Lemma equal_2 : equal s s' = true -> Equal s s'.
- Proof. exact (@equal_2 s s'). Qed.
-
- Lemma ocaml_equal_alt : ocaml_equal s s' = equal s s'.
- Proof.
- destruct s; destruct s'; unfold ocaml_equal, equal; simpl.
- apply ocaml_equal_alt; auto.
- Qed.
-
- Lemma ocaml_equal_1 : Equal s s' -> ocaml_equal s s' = true.
- Proof. exact (ocaml_equal_1 (is_bst s) (is_bst s')). Qed.
- Lemma ocaml_equal_2 : ocaml_equal s s' = true -> Equal s s'.
- Proof. exact (@ocaml_equal_2 s s'). Qed.
-
- Ltac wrap t H := unfold t, In; simpl; rewrite H; auto; intuition.
-
- Lemma subset_1 : Subset s s' -> subset s s' = true.
- Proof. wrap subset subset_12. Qed.
- Lemma subset_2 : subset s s' = true -> Subset s s'.
- Proof. wrap subset subset_12. Qed.
-
- Lemma ocaml_subset_alt : ocaml_subset s s' = subset s s'.
- Proof.
- destruct s; destruct s'; unfold ocaml_subset, subset; simpl.
- rewrite ocaml_subset_alt; auto.
- Qed.
-
- Lemma ocaml_subset_1 : Subset s s' -> ocaml_subset s s' = true.
- Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed.
- Lemma ocaml_subset_2 : ocaml_subset s s' = true -> Subset s s'.
- Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed.
-
- Lemma empty_1 : Empty empty.
- Proof. exact empty_1. Qed.
-
- Lemma is_empty_1 : Empty s -> is_empty s = true.
- Proof. exact (@is_empty_1 s). Qed.
- Lemma is_empty_2 : is_empty s = true -> Empty s.
- Proof. exact (@is_empty_2 s). Qed.
-
- Lemma add_1 : E.eq x y -> In y (add x s).
- Proof. wrap add add_in. Qed.
- Lemma add_2 : In y s -> In y (add x s).
- Proof. wrap add add_in. Qed.
- Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
- Proof. wrap add add_in. elim H; auto. Qed.
-
- Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
- Proof. wrap remove remove_in. Qed.
- Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
- Proof. wrap remove remove_in. Qed.
- Lemma remove_3 : In y (remove x s) -> In y s.
- Proof. wrap remove remove_in. Qed.
-
- Lemma singleton_1 : In y (singleton x) -> E.eq x y.
- Proof. exact (@singleton_1 x y). Qed.
- Lemma singleton_2 : E.eq x y -> In y (singleton x).
- Proof. exact (@singleton_2 x y). Qed.
-
- Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
- Proof. wrap union union_in. Qed.
- Lemma union_2 : In x s -> In x (union s s').
- Proof. wrap union union_in. Qed.
- Lemma union_3 : In x s' -> In x (union s s').
- Proof. wrap union union_in. Qed.
-
- Lemma ocaml_union_alt : Equal (ocaml_union s s') (union s s').
- Proof.
- unfold ocaml_union, union, Equal, In.
- destruct s as (s0,b,a); destruct s' as (s0',b',a'); simpl.
- exact (@ocaml_union_alt (s0,s0') b a b' a').
- Qed.
-
- Lemma ocaml_union_1 : In x (ocaml_union s s') -> In x s \/ In x s'.
- Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
- Lemma ocaml_union_2 : In x s -> In x (ocaml_union s s').
- Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
- Lemma ocaml_union_3 : In x s' -> In x (ocaml_union s s').
- Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
-
- Lemma inter_1 : In x (inter s s') -> In x s.
- Proof. wrap inter inter_in. Qed.
- Lemma inter_2 : In x (inter s s') -> In x s'.
- Proof. wrap inter inter_in. Qed.
- Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
- Proof. wrap inter inter_in. Qed.
-
- Lemma diff_1 : In x (diff s s') -> In x s.
- Proof. wrap diff diff_in. Qed.
- Lemma diff_2 : In x (diff s s') -> ~ In x s'.
- Proof. wrap diff diff_in. Qed.
- Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
- Proof. wrap diff diff_in. Qed.
-
- Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
- fold f s i = fold_left (fun a e => f e a) (elements s) i.
- Proof.
- unfold fold, elements; intros; apply fold_1; auto.
- Qed.
-
- Lemma cardinal_1 : cardinal s = length (elements s).
- Proof.
- unfold cardinal, elements; intros; apply elements_cardinal; auto.
- Qed.
-
- Section Filter.
- Variable f : elt -> bool.
-
- Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
- Proof. intro. wrap filter filter_in. Qed.
- Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
- Proof. intro. wrap filter filter_in. Qed.
- Lemma filter_3 : compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
- Proof. intro. wrap filter filter_in. Qed.
-
- Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true.
- Proof. exact (@for_all_1 f s). Qed.
- Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s.
- Proof. exact (@for_all_2 f s). Qed.
-
- Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
- Proof. exact (@exists_1 f s). Qed.
- Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
- Proof. exact (@exists_2 f s). Qed.
-
- Lemma partition_1 : compat_bool E.eq f ->
- Equal (fst (partition f s)) (filter f s).
- Proof.
- unfold partition, filter, Equal, In; simpl ;intros H a.
- rewrite partition_in_1, filter_in; intuition.
- Qed.
-
- Lemma partition_2 : compat_bool E.eq f ->
- Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
- Proof.
- unfold partition, filter, Equal, In; simpl ;intros H a.
- rewrite partition_in_2, filter_in; intuition.
- rewrite H2; auto.
- destruct (f a); auto.
- red; intros; f_equal.
- rewrite (H _ _ H0); auto.
- Qed.
-
- End Filter.
-
- Lemma elements_1 : In x s -> InA E.eq x (elements s).
- Proof. wrap elements elements_in. Qed.
- Lemma elements_2 : InA E.eq x (elements s) -> In x s.
- Proof. wrap elements elements_in. Qed.
- Lemma elements_3 : sort E.lt (elements s).
- Proof. exact (elements_sort (is_bst s)). Qed.
- Lemma elements_3w : NoDupA E.eq (elements s).
- Proof. exact (elements_nodup (is_bst s)). Qed.
-
- Lemma min_elt_1 : min_elt s = Some x -> In x s.
- Proof. exact (@min_elt_1 s x). Qed.
- Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
- Proof. exact (@min_elt_2 s x y (is_bst s)). Qed.
- Lemma min_elt_3 : min_elt s = None -> Empty s.
- Proof. exact (@min_elt_3 s). Qed.
-
- Lemma max_elt_1 : max_elt s = Some x -> In x s.
- Proof. exact (@max_elt_1 s x). Qed.
- Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
- Proof. exact (@max_elt_2 s x y (is_bst s)). Qed.
- Lemma max_elt_3 : max_elt s = None -> Empty s.
- Proof. exact (@max_elt_3 s). Qed.
-
- Lemma choose_1 : choose s = Some x -> In x s.
- Proof. exact (@choose_1 s x). Qed.
- Lemma choose_2 : choose s = None -> Empty s.
- Proof. exact (@choose_2 s). Qed.
- Lemma choose_3 : choose s = Some x -> choose s' = Some y ->
- Equal s s' -> E.eq x y.
- Proof. exact (@choose_3 _ _ (is_bst s) (is_bst s') x y). Qed.
-
- Lemma eq_refl : eq s s.
- Proof. exact (eq_refl s). Qed.
- Lemma eq_sym : eq s s' -> eq s' s.
- Proof. exact (@eq_sym s s'). Qed.
- Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''.
- Proof. exact (@eq_trans s s' s''). Qed.
-
- Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''.
- Proof. exact (@lt_trans s s' s''). Qed.
- Lemma lt_not_eq : lt s s' -> ~eq s s'.
- Proof. exact (@lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
-
- End Specs.
-End IntMake.
-
-(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
-
-Module Make (X: OrderedType) <: S with Module E := X
- :=IntMake(Z_as_Int)(X).
-