summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetEqProperties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetEqProperties.v')
-rw-r--r--theories/FSets/FSetEqProperties.v923
1 files changed, 923 insertions, 0 deletions
diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v
new file mode 100644
index 00000000..006d78c7
--- /dev/null
+++ b/theories/FSets/FSetEqProperties.v
@@ -0,0 +1,923 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id: FSetEqProperties.v 8639 2006-03-16 19:21:55Z letouzey $ *)
+
+(** * Finite sets library *)
+
+(** This module proves many properties of finite sets that
+ are consequences of the axiomatization in [FsetInterface]
+ Contrary to the functor in [FsetProperties] it uses
+ sets operations instead of predicates over sets, i.e.
+ [mem x s=true] instead of [In x s],
+ [equal s s'=true] instead of [Equal s s'], etc. *)
+
+
+Require Import FSetProperties.
+Require Import Zerob.
+Require Import Sumbool.
+Require Import Omega.
+
+Module EqProperties (M:S).
+Import M.
+Import Logic. (* to unmask [eq] *)
+Import Peano. (* to unmask [lt] *)
+
+Module ME := OrderedTypeFacts E.
+Module MP := Properties M.
+Import MP.
+Import MP.FM.
+
+Definition Add := MP.Add.
+
+Section BasicProperties.
+
+(** Some old specifications written with boolean equalities. *)
+
+Variable s s' s'': t.
+Variable x y z : elt.
+
+Lemma mem_eq:
+ E.eq x y -> mem x s=mem y s.
+Proof.
+intro H; rewrite H; auto.
+Qed.
+
+Lemma equal_mem_1:
+ (forall a, mem a s=mem a s') -> equal s s'=true.
+Proof.
+intros; apply equal_1; unfold Equal; intros.
+do 2 rewrite mem_iff; rewrite H; tauto.
+Qed.
+
+Lemma equal_mem_2:
+ equal s s'=true -> forall a, mem a s=mem a s'.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma subset_mem_1:
+ (forall a, mem a s=true->mem a s'=true) -> subset s s'=true.
+Proof.
+intros; apply subset_1; unfold Subset; intros a.
+do 2 rewrite mem_iff; auto.
+Qed.
+
+Lemma subset_mem_2:
+ subset s s'=true -> forall a, mem a s=true -> mem a s'=true.
+Proof.
+intros H a; do 2 rewrite <- mem_iff; apply subset_2; auto.
+Qed.
+
+Lemma empty_mem: mem x empty=false.
+Proof.
+rewrite <- not_mem_iff; auto.
+Qed.
+
+Lemma is_empty_equal_empty: is_empty s = equal s empty.
+Proof.
+apply bool_1; split; intros.
+rewrite <- (empty_is_empty_1 (s:=empty)); auto with set.
+rewrite <- is_empty_iff; auto with set.
+Qed.
+
+Lemma choose_mem_1: choose s=Some x -> mem x s=true.
+Proof.
+auto.
+Qed.
+
+Lemma choose_mem_2: choose s=None -> is_empty s=true.
+Proof.
+auto.
+Qed.
+
+Lemma add_mem_1: mem x (add x s)=true.
+Proof.
+auto.
+Qed.
+
+Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
+Proof.
+apply add_neq_b.
+Qed.
+
+Lemma remove_mem_1: mem x (remove x s)=false.
+Proof.
+rewrite <- not_mem_iff; auto.
+Qed.
+
+Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
+Proof.
+apply remove_neq_b.
+Qed.
+
+Lemma singleton_equal_add:
+ equal (singleton x) (add x empty)=true.
+Proof.
+rewrite (singleton_equal_add x); auto with set.
+Qed.
+
+Lemma union_mem:
+ mem x (union s s')=mem x s || mem x s'.
+Proof.
+apply union_b.
+Qed.
+
+Lemma inter_mem:
+ mem x (inter s s')=mem x s && mem x s'.
+Proof.
+apply inter_b.
+Qed.
+
+Lemma diff_mem:
+ mem x (diff s s')=mem x s && negb (mem x s').
+Proof.
+apply diff_b.
+Qed.
+
+(** properties of [mem] *)
+
+Lemma mem_3 : ~In x s -> mem x s=false.
+Proof.
+intros; rewrite <- not_mem_iff; auto.
+Qed.
+
+Lemma mem_4 : mem x s=false -> ~In x s.
+Proof.
+intros; rewrite not_mem_iff; auto.
+Qed.
+
+(** Properties of [equal] *)
+
+Lemma equal_refl: equal s s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma equal_sym: equal s s'=equal s' s.
+Proof.
+intros; apply bool_1; do 2 rewrite <- equal_iff; intuition.
+Qed.
+
+Lemma equal_trans:
+ equal s s'=true -> equal s' s''=true -> equal s s''=true.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma equal_equal:
+ equal s s'=true -> equal s s''=equal s' s''.
+Proof.
+intros; rewrite (equal_2 H); auto.
+Qed.
+
+Lemma equal_cardinal:
+ equal s s'=true -> cardinal s=cardinal s'.
+Proof.
+auto with set.
+Qed.
+
+(* Properties of [subset] *)
+
+Lemma subset_refl: subset s s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma subset_antisym:
+ subset s s'=true -> subset s' s=true -> equal s s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma subset_trans:
+ subset s s'=true -> subset s' s''=true -> subset s s''=true.
+Proof.
+do 3 rewrite <- subset_iff; intros.
+apply subset_trans with s'; auto.
+Qed.
+
+Lemma subset_equal:
+ equal s s'=true -> subset s s'=true.
+Proof.
+auto with set.
+Qed.
+
+(** Properties of [choose] *)
+
+Lemma choose_mem_3:
+ is_empty s=false -> {x:elt|choose s=Some x /\ mem x s=true}.
+Proof.
+intros.
+generalize (@choose_1 s) (@choose_2 s).
+destruct (choose s);intros.
+exists e;auto.
+generalize (H1 (refl_equal None)); clear H1.
+intros; rewrite (is_empty_1 H1) in H; discriminate.
+Qed.
+
+Lemma choose_mem_4: choose empty=None.
+Proof.
+generalize (@choose_1 empty).
+case (@choose empty);intros;auto.
+elim (@empty_1 e); auto.
+Qed.
+
+(** Properties of [add] *)
+
+Lemma add_mem_3:
+ mem y s=true -> mem y (add x s)=true.
+Proof.
+auto.
+Qed.
+
+Lemma add_equal:
+ mem x s=true -> equal (add x s) s=true.
+Proof.
+auto with set.
+Qed.
+
+(** Properties of [remove] *)
+
+Lemma remove_mem_3:
+ mem y (remove x s)=true -> mem y s=true.
+Proof.
+rewrite remove_b; intros H;destruct (andb_prop _ _ H); auto.
+Qed.
+
+Lemma remove_equal:
+ mem x s=false -> equal (remove x s) s=true.
+Proof.
+intros; apply equal_1; apply remove_equal.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma add_remove:
+ mem x s=true -> equal (add x (remove x s)) s=true.
+Proof.
+intros; apply equal_1; apply add_remove; auto.
+Qed.
+
+Lemma remove_add:
+ mem x s=false -> equal (remove x (add x s)) s=true.
+Proof.
+intros; apply equal_1; apply remove_add; auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+(** Properties of [is_empty] *)
+
+Lemma is_empty_cardinal: is_empty s = zerob (cardinal s).
+Proof.
+intros; apply bool_1; split; intros.
+rewrite cardinal_1; simpl; auto.
+assert (cardinal s = 0) by apply zerob_true_elim; auto.
+auto.
+Qed.
+
+(** Properties of [singleton] *)
+
+Lemma singleton_mem_1: mem x (singleton x)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
+Proof.
+intros; rewrite singleton_b.
+unfold ME.eqb; destruct (ME.eq_dec x y); intuition.
+Qed.
+
+Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
+Proof.
+auto.
+Qed.
+
+(** Properties of [union] *)
+
+Lemma union_sym:
+ equal (union s s') (union s' s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_equal:
+ subset s s'=true -> equal (union s s') s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_equal_1:
+ equal s s'=true-> equal (union s s'') (union s' s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_equal_2:
+ equal s' s''=true-> equal (union s s') (union s s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_assoc:
+ equal (union (union s s') s'') (union s (union s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_union_singleton:
+ equal (add x s) (union (singleton x) s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_add:
+ equal (union (add x s) s') (add x (union s s'))=true.
+Proof.
+auto with set.
+Qed.
+
+(* caracterisation of [union] via [subset] *)
+
+Lemma union_subset_1: subset s (union s s')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_2: subset s' (union s s')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_subset_3:
+ subset s s''=true -> subset s' s''=true ->
+ subset (union s s') s''=true.
+Proof.
+intros; apply subset_1; apply union_subset_3; auto.
+Qed.
+
+(** Properties of [inter] *)
+
+Lemma inter_sym: equal (inter s s') (inter s' s)=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_equal:
+ subset s s'=true -> equal (inter s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_equal_1:
+ equal s s'=true -> equal (inter s s'') (inter s' s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_equal_2:
+ equal s' s''=true -> equal (inter s s') (inter s s'')=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_assoc:
+ equal (inter (inter s s') s'') (inter s (inter s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_inter_1:
+ equal (inter (union s s') s'') (union (inter s s'') (inter s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_inter_2:
+ equal (union (inter s s') s'') (inter (union s s'') (union s' s''))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_add_1: mem x s'=true ->
+ equal (inter (add x s) s') (add x (inter s s'))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_add_2: mem x s'=false ->
+ equal (inter (add x s) s') (inter s s')=true.
+Proof.
+intros; apply equal_1; apply inter_add_2.
+rewrite not_mem_iff; auto.
+Qed.
+
+(* caracterisation of [union] via [subset] *)
+
+Lemma inter_subset_1: subset (inter s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_2: subset (inter s s') s'=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma inter_subset_3:
+ subset s'' s=true -> subset s'' s'=true ->
+ subset s'' (inter s s')=true.
+Proof.
+intros; apply subset_1; apply inter_subset_3; auto.
+Qed.
+
+(** Properties of [diff] *)
+
+Lemma diff_subset: subset (diff s s') s=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_subset_equal:
+ subset s s'=true -> equal (diff s s') empty=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma remove_inter_singleton:
+ equal (remove x s) (diff s (singleton x))=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_inter_empty:
+ equal (inter (diff s s') (inter s s')) empty=true.
+Proof.
+auto with set.
+Qed.
+
+Lemma diff_inter_all:
+ equal (union (diff s s') (inter s s')) s=true.
+Proof.
+auto with set.
+Qed.
+
+End BasicProperties.
+
+Hint Immediate empty_mem is_empty_equal_empty add_mem_1
+ remove_mem_1 singleton_equal_add union_mem inter_mem
+ diff_mem equal_sym add_remove remove_add : set.
+Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
+ choose_mem_2 add_mem_2 remove_mem_2 equal_refl equal_equal
+ subset_refl subset_equal subset_antisym
+ add_mem_3 add_equal remove_mem_3 remove_equal : set.
+
+
+(** General recursion principes based on [cardinal] *)
+
+Lemma cardinal_set_rec: forall (P:t->Type),
+ (forall s s', equal s s'=true -> P s -> P s') ->
+ (forall s x, mem x s=false -> P s -> P (add x s)) ->
+ P empty -> forall n s, cardinal s=n -> P s.
+Proof.
+intros.
+apply cardinal_induction with n; auto; intros.
+apply X with empty; auto with set.
+apply X with (add x s0); auto with set.
+apply equal_1; intro a; rewrite add_iff; rewrite (H1 a); tauto.
+apply X0; auto with set; apply mem_3; auto.
+Qed.
+
+Lemma set_rec: forall (P:t->Type),
+ (forall s s', equal s s'=true -> P s -> P s') ->
+ (forall s x, mem x s=false -> P s -> P (add x s)) ->
+ P empty -> forall s, P s.
+Proof.
+intros;apply cardinal_set_rec with (cardinal s);auto.
+Qed.
+
+(** Properties of [fold] *)
+
+Lemma exclusive_set : forall s s' x,
+ ~In x s\/~In x s' <-> mem x s && mem x s'=false.
+Proof.
+intros; do 2 rewrite not_mem_iff.
+destruct (mem x s); destruct (mem x s'); intuition.
+Qed.
+
+Section Fold.
+Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
+Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
+Variables (i:A).
+Variables (s s':t)(x:elt).
+
+Lemma fold_empty: eqA (fold f empty i) i.
+Proof.
+apply fold_empty; auto.
+Qed.
+
+Lemma fold_equal:
+ equal s s'=true -> eqA (fold f s i) (fold f s' i).
+Proof.
+intros; apply fold_equal with (eqA:=eqA); auto.
+Qed.
+
+Lemma fold_add:
+ mem x s=false -> eqA (fold f (add x s) i) (f x (fold f s i)).
+Proof.
+intros; apply fold_add with (eqA:=eqA); auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma add_fold:
+ mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
+Proof.
+intros; apply add_fold with (eqA:=eqA); auto.
+Qed.
+
+Lemma remove_fold_1:
+ mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
+Proof.
+intros; apply remove_fold_1 with (eqA:=eqA); auto.
+Qed.
+
+Lemma remove_fold_2:
+ mem x s=false -> eqA (fold f (remove x s) i) (fold f s i).
+Proof.
+intros; apply remove_fold_2 with (eqA:=eqA); auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma fold_union:
+ (forall x, mem x s && mem x s'=false) ->
+ eqA (fold f (union s s') i) (fold f s (fold f s' i)).
+Proof.
+intros; apply fold_union with (eqA:=eqA); auto.
+intros; rewrite exclusive_set; auto.
+Qed.
+
+End Fold.
+
+(** Properties of [cardinal] *)
+
+Lemma add_cardinal_1:
+ forall s x, mem x s=true -> cardinal (add x s)=cardinal s.
+Proof.
+auto with set.
+Qed.
+
+Lemma add_cardinal_2:
+ forall s x, mem x s=false -> cardinal (add x s)=S (cardinal s).
+Proof.
+intros; apply add_cardinal_2; auto.
+rewrite not_mem_iff; auto.
+Qed.
+
+Lemma remove_cardinal_1:
+ forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
+Proof.
+intros; apply remove_cardinal_1; auto.
+Qed.
+
+Lemma remove_cardinal_2:
+ forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
+Proof.
+auto with set.
+Qed.
+
+Lemma union_cardinal:
+ forall s s', (forall x, mem x s && mem x s'=false) ->
+ cardinal (union s s')=cardinal s+cardinal s'.
+Proof.
+intros; apply union_cardinal; auto; intros.
+rewrite exclusive_set; auto.
+Qed.
+
+Lemma subset_cardinal:
+ forall s s', subset s s'=true -> cardinal s<=cardinal s'.
+Proof.
+intros; apply subset_cardinal; auto.
+Qed.
+
+Section Bool.
+
+(** Properties of [filter] *)
+
+Variable f:elt->bool.
+Variable Comp: compat_bool E.eq f.
+
+Let Comp' : compat_bool E.eq (fun x =>negb (f x)).
+Proof.
+unfold compat_bool in *; intros; f_equal; auto.
+Qed.
+
+Lemma filter_mem: forall s x, mem x (filter f s)=mem x s && f x.
+Proof.
+intros; apply filter_b; auto.
+Qed.
+
+Lemma for_all_filter:
+ forall s, for_all f s=is_empty (filter (fun x => negb (f x)) s).
+Proof.
+intros; apply bool_1; split; intros.
+apply is_empty_1.
+unfold Empty; intros.
+rewrite filter_iff; auto.
+red; destruct 1.
+rewrite <- (@for_all_iff s f) in H; auto.
+rewrite (H a H0) in H1; discriminate.
+apply for_all_1; auto; red; intros.
+revert H; rewrite <- is_empty_iff.
+unfold Empty; intro H; generalize (H x); clear H.
+rewrite filter_iff; auto.
+destruct (f x); auto.
+Qed.
+
+Lemma exists_filter :
+ forall s, exists_ f s=negb (is_empty (filter f s)).
+Proof.
+intros; apply bool_1; split; intros.
+destruct (exists_2 Comp H) as (a,(Ha1,Ha2)).
+apply bool_6.
+red; intros; apply (@is_empty_2 _ H0 a); auto.
+generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)).
+destruct (choose (filter f s)).
+intros H0 _; apply exists_1; auto.
+exists e; generalize (H0 e); rewrite filter_iff; auto.
+intros _ H0.
+rewrite (is_empty_1 (H0 (refl_equal None))) in H; auto; discriminate.
+Qed.
+
+Lemma partition_filter_1:
+ forall s, equal (fst (partition f s)) (filter f s)=true.
+Proof.
+auto.
+Qed.
+
+Lemma partition_filter_2:
+ forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
+Proof.
+auto.
+Qed.
+
+Lemma add_filter_1 : forall s s' x,
+ f x=true -> (Add x s s') -> (Add x (filter f s) (filter f s')).
+Proof.
+unfold Add, MP.Add; intros.
+repeat rewrite filter_iff; auto.
+rewrite H0; clear H0.
+assert (E.eq x y -> f y = true) by
+ intro H0; rewrite <- (Comp _ _ H0); auto.
+tauto.
+Qed.
+
+Lemma add_filter_2 : forall s s' x,
+ f x=false -> (Add x s s') -> filter f s [=] filter f s'.
+Proof.
+unfold Add, MP.Add, Equal; intros.
+repeat rewrite filter_iff; auto.
+rewrite H0; clear H0.
+assert (f a = true -> ~E.eq x a).
+ intros H0 H1.
+ rewrite (Comp _ _ H1) in H.
+ rewrite H in H0; discriminate.
+tauto.
+Qed.
+
+Lemma union_filter: forall f g, (compat_bool E.eq f) -> (compat_bool E.eq g) ->
+ forall s, union (filter f s) (filter g s) [=] filter (fun x=>orb (f x) (g x)) s.
+Proof.
+clear Comp' Comp f.
+intros.
+assert (compat_bool E.eq (fun x => orb (f x) (g x))).
+ unfold compat_bool; intros.
+ rewrite (H x y H1); rewrite (H0 x y H1); auto.
+unfold Equal; intros; set_iff; repeat rewrite filter_iff; auto.
+assert (f a || g a = true <-> f a = true \/ g a = true).
+ split; auto with bool.
+ intro H3; destruct (orb_prop _ _ H3); auto.
+tauto.
+Qed.
+
+(** Properties of [for_all] *)
+
+Lemma for_all_mem_1: forall s,
+ (forall x, (mem x s)=true->(f x)=true) -> (for_all f s)=true.
+Proof.
+intros.
+rewrite for_all_filter; auto.
+rewrite is_empty_equal_empty.
+apply equal_mem_1;intros.
+rewrite filter_b; auto.
+rewrite empty_mem.
+generalize (H a); case (mem a s);intros;auto.
+rewrite H0;auto.
+Qed.
+
+Lemma for_all_mem_2: forall s,
+ (for_all f s)=true -> forall x,(mem x s)=true -> (f x)=true.
+Proof.
+intros.
+rewrite for_all_filter in H; auto.
+rewrite is_empty_equal_empty in H.
+generalize (equal_mem_2 _ _ H x).
+rewrite filter_b; auto.
+rewrite empty_mem.
+rewrite H0; simpl;intros.
+replace true with (negb false);auto;apply negb_sym;auto.
+Qed.
+
+Lemma for_all_mem_3:
+ forall s x,(mem x s)=true -> (f x)=false -> (for_all f s)=false.
+Proof.
+intros.
+apply (bool_eq_ind (for_all f s));intros;auto.
+rewrite for_all_filter in H1; auto.
+rewrite is_empty_equal_empty in H1.
+generalize (equal_mem_2 _ _ H1 x).
+rewrite filter_b; auto.
+rewrite empty_mem.
+rewrite H.
+rewrite H0.
+simpl;auto.
+Qed.
+
+Lemma for_all_mem_4:
+ forall s, for_all f s=false -> {x:elt | mem x s=true /\ f x=false}.
+Proof.
+intros.
+rewrite for_all_filter in H; auto.
+destruct (choose_mem_3 _ H) as (x,(H0,H1));intros.
+exists x.
+rewrite filter_b in H1; auto.
+elim (andb_prop _ _ H1).
+split;auto.
+replace false with (negb true);auto;apply negb_sym;auto.
+Qed.
+
+(** Properties of [exists] *)
+
+Lemma for_all_exists:
+ forall s, exists_ f s = negb (for_all (fun x =>negb (f x)) s).
+Proof.
+intros.
+rewrite for_all_b; auto.
+rewrite exists_b; auto.
+induction (elements s); simpl; auto.
+destruct (f a); simpl; auto.
+Qed.
+
+End Bool.
+Section Bool'.
+
+Variable f:elt->bool.
+Variable Comp: compat_bool E.eq f.
+
+Let Comp' : compat_bool E.eq (fun x =>negb (f x)).
+Proof.
+unfold compat_bool in *; intros; f_equal; auto.
+Qed.
+
+Lemma exists_mem_1:
+ forall s, (forall x, mem x s=true->f x=false) -> exists_ f s=false.
+Proof.
+intros.
+rewrite for_all_exists; auto.
+rewrite for_all_mem_1;auto with bool.
+intros;generalize (H x H0);intros.
+symmetry;apply negb_sym;simpl;auto.
+Qed.
+
+Lemma exists_mem_2:
+ forall s, exists_ f s=false -> forall x, mem x s=true -> f x=false.
+Proof.
+intros.
+rewrite for_all_exists in H; auto.
+replace false with (negb true);auto;apply negb_sym;symmetry.
+rewrite (for_all_mem_2 (fun x => negb (f x)) Comp' s);simpl;auto.
+replace true with (negb false);auto;apply negb_sym;auto.
+Qed.
+
+Lemma exists_mem_3:
+ forall s x, mem x s=true -> f x=true -> exists_ f s=true.
+Proof.
+intros.
+rewrite for_all_exists; auto.
+symmetry;apply negb_sym;simpl.
+apply for_all_mem_3 with x;auto.
+rewrite H0;auto.
+Qed.
+
+Lemma exists_mem_4:
+ forall s, exists_ f s=true -> {x:elt | (mem x s)=true /\ (f x)=true}.
+Proof.
+intros.
+rewrite for_all_exists in H; auto.
+elim (for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros.
+elim p;intros.
+exists x;split;auto.
+replace true with (negb false);auto;apply negb_sym;auto.
+replace false with (negb true);auto;apply negb_sym;auto.
+Qed.
+
+End Bool'.
+
+Section Sum.
+
+(** Adding a valuation function on all elements of a set. *)
+
+Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
+
+Lemma sum_plus :
+ forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
+ forall s, sum (fun x =>f x+g x) s = sum f s + sum g s.
+Proof.
+unfold sum.
+intros f g Hf Hg.
+assert (fc : compat_op E.eq (@eq _) (fun x:elt =>plus (f x))). auto.
+assert (ft : transpose (@eq _) (fun x:elt =>plus (f x))). red; intros; omega.
+assert (gc : compat_op E.eq (@eq _) (fun x:elt => plus (g x))). auto.
+assert (gt : transpose (@eq _) (fun x:elt =>plus (g x))). red; intros; omega.
+assert (fgc : compat_op E.eq (@eq _) (fun x:elt =>plus ((f x)+(g x)))). auto.
+assert (fgt : transpose (@eq _) (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega.
+assert (st := gen_st nat).
+intros s;pattern s; apply set_rec.
+intros.
+rewrite <- (fold_equal _ _ st _ fc ft 0 _ _ H).
+rewrite <- (fold_equal _ _ st _ gc gt 0 _ _ H).
+rewrite <- (fold_equal _ _ st _ fgc fgt 0 _ _ H); auto.
+intros; do 3 (rewrite (fold_add _ _ st);auto).
+rewrite H0;simpl;omega.
+intros; do 3 rewrite (fold_empty _ _ st);auto.
+Qed.
+
+Lemma sum_filter : forall f, (compat_bool E.eq f) ->
+ forall s, (sum (fun x => if f x then 1 else 0) s) = (cardinal (filter f s)).
+Proof.
+unfold sum; intros f Hf.
+assert (st := gen_st nat).
+assert (cc : compat_op E.eq (@eq _) (fun x => plus (if f x then 1 else 0))).
+ unfold compat_op; intros.
+ rewrite (Hf x x' H); auto.
+assert (ct : transpose (@eq _) (fun x => plus (if f x then 1 else 0))).
+ unfold transpose; intros; omega.
+intros s;pattern s; apply set_rec.
+intros.
+change elt with E.t.
+rewrite <- (fold_equal _ _ st _ cc ct 0 _ _ H).
+rewrite <- (MP.Equal_cardinal (filter_equal Hf (equal_2 H))); auto.
+intros; rewrite (fold_add _ _ st _ cc ct); auto.
+generalize (@add_filter_1 f Hf s0 (add x s0) x) (@add_filter_2 f Hf s0 (add x s0) x) .
+assert (~ In x (filter f s0)).
+ intro H1; rewrite (mem_1 (filter_1 Hf H1)) in H; discriminate H.
+case (f x); simpl; intros.
+rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto.
+rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto.
+intros; rewrite (fold_empty _ _ st);auto.
+rewrite MP.cardinal_1; auto.
+unfold Empty; intros.
+rewrite filter_iff; auto; set_iff; tauto.
+Qed.
+
+Lemma fold_compat :
+ forall (A:Set)(eqA:A->A->Prop)(st:(Setoid_Theory _ eqA))
+ (f g:elt->A->A),
+ (compat_op E.eq eqA f) -> (transpose eqA f) ->
+ (compat_op E.eq eqA g) -> (transpose eqA g) ->
+ forall (i:A)(s:t),(forall x:elt, (In x s) -> forall y, (eqA (f x y) (g x y))) ->
+ (eqA (fold f s i) (fold g s i)).
+Proof.
+intros A eqA st f g fc ft gc gt i.
+intro s; pattern s; apply set_rec; intros.
+trans_st (fold f s0 i).
+apply fold_equal with (eqA:=eqA); auto.
+rewrite equal_sym; auto.
+trans_st (fold g s0 i).
+apply H0; intros; apply H1; auto.
+elim (equal_2 H x); auto; intros.
+apply fold_equal with (eqA:=eqA); auto.
+trans_st (f x (fold f s0 i)).
+apply fold_add with (eqA:=eqA); auto.
+trans_st (g x (fold f s0 i)).
+trans_st (g x (fold g s0 i)).
+sym_st; apply fold_add with (eqA:=eqA); auto.
+trans_st i; [idtac | sym_st ]; apply fold_empty; auto.
+Qed.
+
+Lemma sum_compat :
+ forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
+ forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
+intros.
+unfold sum; apply (fold_compat _ (@eq nat)); auto.
+unfold transpose; intros; omega.
+unfold transpose; intros; omega.
+Qed.
+
+End Sum.
+
+End EqProperties.