summaryrefslogtreecommitdiff
path: root/theories/FSets/FSetCompat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FSetCompat.v')
-rw-r--r--theories/FSets/FSetCompat.v410
1 files changed, 410 insertions, 0 deletions
diff --git a/theories/FSets/FSetCompat.v b/theories/FSets/FSetCompat.v
new file mode 100644
index 00000000..c3d614ee
--- /dev/null
+++ b/theories/FSets/FSetCompat.v
@@ -0,0 +1,410 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(** * Compatibility functors between FSetInterface and MSetInterface. *)
+
+Require Import FSetInterface FSetFacts MSetInterface MSetFacts.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * From new Weak Sets to old ones *)
+
+Module Backport_WSets
+ (E:DecidableType.DecidableType)
+ (M:MSetInterface.WSets with Definition E.t := E.t
+ with Definition E.eq := E.eq)
+ <: FSetInterface.WSfun E.
+
+ Definition elt := E.t.
+ Definition t := M.t.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+ Implicit Type f : elt -> bool.
+
+ Definition In : elt -> t -> Prop := M.In.
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+ Definition empty : t := M.empty.
+ Definition is_empty : t -> bool := M.is_empty.
+ Definition mem : elt -> t -> bool := M.mem.
+ Definition add : elt -> t -> t := M.add.
+ Definition singleton : elt -> t := M.singleton.
+ Definition remove : elt -> t -> t := M.remove.
+ Definition union : t -> t -> t := M.union.
+ Definition inter : t -> t -> t := M.inter.
+ Definition diff : t -> t -> t := M.diff.
+ Definition eq : t -> t -> Prop := M.eq.
+ Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
+ Definition equal : t -> t -> bool := M.equal.
+ Definition subset : t -> t -> bool := M.subset.
+ Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
+ Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
+ Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
+ Definition filter : (elt -> bool) -> t -> t := M.filter.
+ Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
+ Definition cardinal : t -> nat := M.cardinal.
+ Definition elements : t -> list elt := M.elements.
+ Definition choose : t -> option elt := M.choose.
+
+ Module MF := MSetFacts.WFacts M.
+
+ Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s
+ := MF.In_1.
+ Definition eq_refl : forall s, eq s s
+ := @Equivalence_Reflexive _ _ M.eq_equiv.
+ Definition eq_sym : forall s s', eq s s' -> eq s' s
+ := @Equivalence_Symmetric _ _ M.eq_equiv.
+ Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s''
+ := @Equivalence_Transitive _ _ M.eq_equiv.
+ Definition mem_1 : forall s x, In x s -> mem x s = true
+ := MF.mem_1.
+ Definition mem_2 : forall s x, mem x s = true -> In x s
+ := MF.mem_2.
+ Definition equal_1 : forall s s', Equal s s' -> equal s s' = true
+ := MF.equal_1.
+ Definition equal_2 : forall s s', equal s s' = true -> Equal s s'
+ := MF.equal_2.
+ Definition subset_1 : forall s s', Subset s s' -> subset s s' = true
+ := MF.subset_1.
+ Definition subset_2 : forall s s', subset s s' = true -> Subset s s'
+ := MF.subset_2.
+ Definition empty_1 : Empty empty := MF.empty_1.
+ Definition is_empty_1 : forall s, Empty s -> is_empty s = true
+ := MF.is_empty_1.
+ Definition is_empty_2 : forall s, is_empty s = true -> Empty s
+ := MF.is_empty_2.
+ Definition add_1 : forall s x y, E.eq x y -> In y (add x s)
+ := MF.add_1.
+ Definition add_2 : forall s x y, In y s -> In y (add x s)
+ := MF.add_2.
+ Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s
+ := MF.add_3.
+ Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s)
+ := MF.remove_1.
+ Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s)
+ := MF.remove_2.
+ Definition remove_3 : forall s x y, In y (remove x s) -> In y s
+ := MF.remove_3.
+ Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s'
+ := MF.union_1.
+ Definition union_2 : forall s s' x, In x s -> In x (union s s')
+ := MF.union_2.
+ Definition union_3 : forall s s' x, In x s' -> In x (union s s')
+ := MF.union_3.
+ Definition inter_1 : forall s s' x, In x (inter s s') -> In x s
+ := MF.inter_1.
+ Definition inter_2 : forall s s' x, In x (inter s s') -> In x s'
+ := MF.inter_2.
+ Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s')
+ := MF.inter_3.
+ Definition diff_1 : forall s s' x, In x (diff s s') -> In x s
+ := MF.diff_1.
+ Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s'
+ := MF.diff_2.
+ Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s')
+ := MF.diff_3.
+ Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y
+ := MF.singleton_1.
+ Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x)
+ := MF.singleton_2.
+ Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (fun a e => f e a) (elements s) i
+ := MF.fold_1.
+ Definition cardinal_1 : forall s, cardinal s = length (elements s)
+ := MF.cardinal_1.
+ Definition filter_1 : forall s x f, compat_bool E.eq f ->
+ In x (filter f s) -> In x s
+ := MF.filter_1.
+ Definition filter_2 : forall s x f, compat_bool E.eq f ->
+ In x (filter f s) -> f x = true
+ := MF.filter_2.
+ Definition filter_3 : forall s x f, compat_bool E.eq f ->
+ In x s -> f x = true -> In x (filter f s)
+ := MF.filter_3.
+ Definition for_all_1 : forall s f, compat_bool E.eq f ->
+ For_all (fun x => f x = true) s -> for_all f s = true
+ := MF.for_all_1.
+ Definition for_all_2 : forall s f, compat_bool E.eq f ->
+ for_all f s = true -> For_all (fun x => f x = true) s
+ := MF.for_all_2.
+ Definition exists_1 : forall s f, compat_bool E.eq f ->
+ Exists (fun x => f x = true) s -> exists_ f s = true
+ := MF.exists_1.
+ Definition exists_2 : forall s f, compat_bool E.eq f ->
+ exists_ f s = true -> Exists (fun x => f x = true) s
+ := MF.exists_2.
+ Definition partition_1 : forall s f, compat_bool E.eq f ->
+ Equal (fst (partition f s)) (filter f s)
+ := MF.partition_1.
+ Definition partition_2 : forall s f, compat_bool E.eq f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
+ := MF.partition_2.
+ Definition choose_1 : forall s x, choose s = Some x -> In x s
+ := MF.choose_1.
+ Definition choose_2 : forall s, choose s = None -> Empty s
+ := MF.choose_2.
+ Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s)
+ := MF.elements_1.
+ Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s
+ := MF.elements_2.
+ Definition elements_3w : forall s, NoDupA E.eq (elements s)
+ := MF.elements_3w.
+
+End Backport_WSets.
+
+
+(** * From new Sets to new ones *)
+
+Module Backport_Sets
+ (E:OrderedType.OrderedType)
+ (M:MSetInterface.Sets with Definition E.t := E.t
+ with Definition E.eq := E.eq
+ with Definition E.lt := E.lt)
+ <: FSetInterface.S with Module E:=E.
+
+ Include Backport_WSets E M.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+
+ Definition lt : t -> t -> Prop := M.lt.
+ Definition min_elt : t -> option elt := M.min_elt.
+ Definition max_elt : t -> option elt := M.max_elt.
+ Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s
+ := M.min_elt_spec1.
+ Definition min_elt_2 : forall s x y,
+ min_elt s = Some x -> In y s -> ~ E.lt y x
+ := M.min_elt_spec2.
+ Definition min_elt_3 : forall s, min_elt s = None -> Empty s
+ := M.min_elt_spec3.
+ Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s
+ := M.max_elt_spec1.
+ Definition max_elt_2 : forall s x y,
+ max_elt s = Some x -> In y s -> ~ E.lt x y
+ := M.max_elt_spec2.
+ Definition max_elt_3 : forall s, max_elt s = None -> Empty s
+ := M.max_elt_spec3.
+ Definition elements_3 : forall s, sort E.lt (elements s)
+ := M.elements_spec2.
+ Definition choose_3 : forall s s' x y,
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
+ := M.choose_spec3.
+ Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s''
+ := @StrictOrder_Transitive _ _ M.lt_strorder.
+ Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'.
+ Proof.
+ unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt.
+ apply (StrictOrder_Irreflexive s'); auto.
+ Qed.
+ Definition compare : forall s s', Compare lt eq s s'.
+ Proof.
+ intros s s'; destruct (CompSpec2Type (M.compare_spec s s'));
+ [ apply EQ | apply LT | apply GT ]; auto.
+ Defined.
+
+ Module E := E.
+
+End Backport_Sets.
+
+
+(** * From old Weak Sets to new ones. *)
+
+Module Update_WSets
+ (E:Equalities.DecidableType)
+ (M:FSetInterface.WS with Definition E.t := E.t
+ with Definition E.eq := E.eq)
+ <: MSetInterface.WSetsOn E.
+
+ Definition elt := E.t.
+ Definition t := M.t.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+ Implicit Type f : elt -> bool.
+
+ Definition In : elt -> t -> Prop := M.In.
+ Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+ Definition Subset s s' := forall a : elt, In a s -> In a s'.
+ Definition Empty s := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+ Definition empty : t := M.empty.
+ Definition is_empty : t -> bool := M.is_empty.
+ Definition mem : elt -> t -> bool := M.mem.
+ Definition add : elt -> t -> t := M.add.
+ Definition singleton : elt -> t := M.singleton.
+ Definition remove : elt -> t -> t := M.remove.
+ Definition union : t -> t -> t := M.union.
+ Definition inter : t -> t -> t := M.inter.
+ Definition diff : t -> t -> t := M.diff.
+ Definition eq : t -> t -> Prop := M.eq.
+ Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec.
+ Definition equal : t -> t -> bool := M.equal.
+ Definition subset : t -> t -> bool := M.subset.
+ Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold.
+ Definition for_all : (elt -> bool) -> t -> bool := M.for_all.
+ Definition exists_ : (elt -> bool) -> t -> bool := M.exists_.
+ Definition filter : (elt -> bool) -> t -> t := M.filter.
+ Definition partition : (elt -> bool) -> t -> t * t:= M.partition.
+ Definition cardinal : t -> nat := M.cardinal.
+ Definition elements : t -> list elt := M.elements.
+ Definition choose : t -> option elt := M.choose.
+
+ Module MF := FSetFacts.WFacts M.
+
+ Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In.
+ Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed.
+
+ Instance eq_equiv : Equivalence eq.
+
+ Section Spec.
+ Variable s s': t.
+ Variable x y : elt.
+
+ Lemma mem_spec : mem x s = true <-> In x s.
+ Proof. intros; symmetry; apply MF.mem_iff. Qed.
+
+ Lemma equal_spec : equal s s' = true <-> Equal s s'.
+ Proof. intros; symmetry; apply MF.equal_iff. Qed.
+
+ Lemma subset_spec : subset s s' = true <-> Subset s s'.
+ Proof. intros; symmetry; apply MF.subset_iff. Qed.
+
+ Definition empty_spec : Empty empty := M.empty_1.
+
+ Lemma is_empty_spec : is_empty s = true <-> Empty s.
+ Proof. intros; symmetry; apply MF.is_empty_iff. Qed.
+
+ Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
+ Proof. intros. rewrite MF.add_iff. intuition. Qed.
+
+ Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x.
+ Proof. intros. rewrite MF.remove_iff. intuition. Qed.
+
+ Lemma singleton_spec : In y (singleton x) <-> E.eq y x.
+ Proof. intros; rewrite MF.singleton_iff. intuition. Qed.
+
+ Definition union_spec : In x (union s s') <-> In x s \/ In x s'
+ := @MF.union_iff s s' x.
+ Definition inter_spec : In x (inter s s') <-> In x s /\ In x s'
+ := @MF.inter_iff s s' x.
+ Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s'
+ := @MF.diff_iff s s' x.
+ Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (flip f) (elements s) i
+ := @M.fold_1 s.
+ Definition cardinal_spec : cardinal s = length (elements s)
+ := @M.cardinal_1 s.
+
+ Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s.
+ Proof. intros; symmetry; apply MF.elements_iff. Qed.
+
+ Definition elements_spec2w : NoDupA E.eq (elements s)
+ := @M.elements_3w s.
+ Definition choose_spec1 : choose s = Some x -> In x s
+ := @M.choose_1 s x.
+ Definition choose_spec2 : choose s = None -> Empty s
+ := @M.choose_2 s.
+ Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (In x (filter f s) <-> In x s /\ f x = true)
+ := @MF.filter_iff s x.
+ Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f ->
+ Equal (fst (partition f s)) (filter f s)
+ := @M.partition_1 s.
+ Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s)
+ := @M.partition_2 s.
+
+ Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (for_all f s = true <-> For_all (fun x => f x = true) s).
+ Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed.
+
+ Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f ->
+ (exists_ f s = true <-> Exists (fun x => f x = true) s).
+ Proof. intros; symmetry; apply MF.exists_iff; auto. Qed.
+
+ End Spec.
+
+End Update_WSets.
+
+
+(** * From old Sets to new ones. *)
+
+Module Update_Sets
+ (E:Orders.OrderedType)
+ (M:FSetInterface.S with Definition E.t := E.t
+ with Definition E.eq := E.eq
+ with Definition E.lt := E.lt)
+ <: MSetInterface.Sets with Module E:=E.
+
+ Include Update_WSets E M.
+
+ Implicit Type s : t.
+ Implicit Type x y : elt.
+
+ Definition lt : t -> t -> Prop := M.lt.
+ Definition min_elt : t -> option elt := M.min_elt.
+ Definition max_elt : t -> option elt := M.max_elt.
+ Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s
+ := M.min_elt_1.
+ Definition min_elt_spec2 : forall s x y,
+ min_elt s = Some x -> In y s -> ~ E.lt y x
+ := M.min_elt_2.
+ Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s
+ := M.min_elt_3.
+ Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s
+ := M.max_elt_1.
+ Definition max_elt_spec2 : forall s x y,
+ max_elt s = Some x -> In y s -> ~ E.lt x y
+ := M.max_elt_2.
+ Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s
+ := M.max_elt_3.
+ Definition elements_spec2 : forall s, sort E.lt (elements s)
+ := M.elements_3.
+ Definition choose_spec3 : forall s s' x y,
+ choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y
+ := M.choose_3.
+
+ Instance lt_strorder : StrictOrder lt.
+ Proof.
+ split.
+ intros x Hx. apply (M.lt_not_eq Hx); auto with *.
+ exact M.lt_trans.
+ Qed.
+
+ Instance lt_compat : Proper (eq==>eq==>iff) lt.
+ Proof.
+ apply proper_sym_impl_iff_2; auto with *.
+ intros s s' Hs u u' Hu H.
+ assert (H0 : lt s' u).
+ destruct (M.compare s' u) as [H'|H'|H']; auto.
+ elim (M.lt_not_eq H). transitivity s'; auto with *.
+ elim (M.lt_not_eq (M.lt_trans H H')); auto.
+ destruct (M.compare s' u') as [H'|H'|H']; auto.
+ elim (M.lt_not_eq H).
+ transitivity u'; auto with *. transitivity s'; auto with *.
+ elim (M.lt_not_eq (M.lt_trans H' H0)); auto with *.
+ Qed.
+
+ Definition compare s s' :=
+ match M.compare s s' with
+ | EQ _ => Eq
+ | LT _ => Lt
+ | GT _ => Gt
+ end.
+
+ Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s').
+ Proof. intros; unfold compare; destruct M.compare; auto. Qed.
+
+ Module E := E.
+
+End Update_Sets.