summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapWeakFacts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapWeakFacts.v')
-rw-r--r--theories/FSets/FMapWeakFacts.v599
1 files changed, 599 insertions, 0 deletions
diff --git a/theories/FSets/FMapWeakFacts.v b/theories/FSets/FMapWeakFacts.v
new file mode 100644
index 00000000..18f73a3f
--- /dev/null
+++ b/theories/FSets/FMapWeakFacts.v
@@ -0,0 +1,599 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id: FMapWeakFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
+
+(** * Finite maps library *)
+
+(** This functor derives additional facts from [FMapWeakInterface.S]. These
+ facts are mainly the specifications of [FMapWeakInterface.S] written using
+ different styles: equivalence and boolean equalities.
+*)
+
+Require Import Bool.
+Require Import OrderedType.
+Require Export FMapWeakInterface.
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module Facts (M: S).
+Import M.
+Import Logic. (* to unmask [eq] *)
+Import Peano. (* to unmask [lt] *)
+
+Lemma MapsTo_fun : forall (elt:Set) m x (e e':elt),
+ MapsTo x e m -> MapsTo x e' m -> e=e'.
+Proof.
+intros.
+generalize (find_1 H) (find_1 H0); clear H H0.
+intros; rewrite H in H0; injection H0; auto.
+Qed.
+
+(** * Specifications written using equivalences *)
+
+Section IffSpec.
+Variable elt elt' elt'': Set.
+Implicit Type m: t elt.
+Implicit Type x y z: key.
+Implicit Type e: elt.
+
+Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
+Proof.
+split; apply MapsTo_1; auto.
+Qed.
+
+Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
+Proof.
+unfold In.
+split; intros (e0,H0); exists e0.
+apply (MapsTo_1 H H0); auto.
+apply (MapsTo_1 (E.eq_sym H) H0); auto.
+Qed.
+
+Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
+Proof.
+split; [apply find_1|apply find_2].
+Qed.
+
+Lemma not_find_mapsto_iff : forall m x, ~In x m <-> find x m = None.
+Proof.
+intros.
+generalize (find_mapsto_iff m x); destruct (find x m).
+split; intros; try discriminate.
+destruct H0.
+exists e; rewrite H; auto.
+split; auto.
+intros; intros (e,H1).
+rewrite H in H1; discriminate.
+Qed.
+
+Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
+Proof.
+split; [apply mem_1|apply mem_2].
+Qed.
+
+Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
+Proof.
+intros; rewrite mem_in_iff; destruct (mem x m); intuition.
+Qed.
+
+Lemma equal_iff : forall m m' cmp, Equal cmp m m' <-> equal cmp m m' = true.
+Proof.
+split; [apply equal_1|apply equal_2].
+Qed.
+
+Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
+Proof.
+intuition; apply (empty_1 H).
+Qed.
+
+Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
+Proof.
+unfold In.
+split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
+Qed.
+
+Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
+Proof.
+split; [apply is_empty_1|apply is_empty_2].
+Qed.
+
+Lemma add_mapsto_iff : forall m x y e e',
+ MapsTo y e' (add x e m) <->
+ (E.eq x y /\ e=e') \/
+ (~E.eq x y /\ MapsTo y e' m).
+Proof.
+intros.
+intuition.
+destruct (E.eq_dec x y); [left|right].
+split; auto.
+symmetry; apply (MapsTo_fun (e':=e) H); auto.
+split; auto; apply add_3 with x e; auto.
+subst; auto.
+Qed.
+
+Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
+Proof.
+unfold In; split.
+intros (e',H).
+destruct (E.eq_dec x y) as [E|E]; auto.
+right; exists e'; auto.
+apply (add_3 E H).
+destruct (E.eq_dec x y) as [E|E]; auto.
+intros.
+exists e; apply add_1; auto.
+intros [H|(e',H)].
+destruct E; auto.
+exists e'; apply add_2; auto.
+Qed.
+
+Lemma add_neq_mapsto_iff : forall m x y e e',
+ ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
+Proof.
+split; [apply add_3|apply add_2]; auto.
+Qed.
+
+Lemma add_neq_in_iff : forall m x y e,
+ ~ E.eq x y -> (In y (add x e m) <-> In y m).
+Proof.
+split; intros (e',H0); exists e'.
+apply (add_3 H H0).
+apply add_2; auto.
+Qed.
+
+Lemma remove_mapsto_iff : forall m x y e,
+ MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
+Proof.
+intros.
+split; intros.
+split.
+assert (In y (remove x m)) by (exists e; auto).
+intro H1; apply (remove_1 H1 H0).
+apply remove_3 with x; auto.
+apply remove_2; intuition.
+Qed.
+
+Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
+Proof.
+unfold In; split.
+intros (e,H).
+split.
+assert (In y (remove x m)) by (exists e; auto).
+intro H1; apply (remove_1 H1 H0).
+exists e; apply remove_3 with x; auto.
+intros (H,(e,H0)); exists e; apply remove_2; auto.
+Qed.
+
+Lemma remove_neq_mapsto_iff : forall m x y e,
+ ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
+Proof.
+split; [apply remove_3|apply remove_2]; auto.
+Qed.
+
+Lemma remove_neq_in_iff : forall m x y,
+ ~ E.eq x y -> (In y (remove x m) <-> In y m).
+Proof.
+split; intros (e',H0); exists e'.
+apply (remove_3 H0).
+apply remove_2; auto.
+Qed.
+
+Lemma elements_mapsto_iff : forall m x e,
+ MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
+Proof.
+split; [apply elements_1 | apply elements_2].
+Qed.
+
+Lemma elements_in_iff : forall m x,
+ In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
+Proof.
+unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
+Qed.
+
+Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
+ MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
+Proof.
+split.
+case_eq (find x m); intros.
+exists e.
+split.
+apply (MapsTo_fun (m:=map f m) (x:=x)); auto.
+apply find_2; auto.
+assert (In x (map f m)) by (exists b; auto).
+destruct (map_2 H1) as (a,H2).
+rewrite (find_1 H2) in H; discriminate.
+intros (a,(H,H0)).
+subst b; auto.
+Qed.
+
+Lemma map_in_iff : forall m x (f : elt -> elt'),
+ In x (map f m) <-> In x m.
+Proof.
+split; intros; eauto.
+destruct H as (a,H).
+exists (f a); auto.
+Qed.
+
+Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
+ In x (mapi f m) <-> In x m.
+Proof.
+split; intros; eauto.
+destruct H as (a,H).
+destruct (mapi_1 f H) as (y,(H0,H1)).
+exists (f y a); auto.
+Qed.
+
+(* Unfortunately, we don't have simple equivalences for [mapi]
+ and [MapsTo]. The only correct one needs compatibility of [f]. *)
+
+Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
+ MapsTo x b (mapi f m) ->
+ exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
+Proof.
+intros; case_eq (find x m); intros.
+exists e.
+destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
+apply find_2; auto.
+exists y; repeat split; auto.
+apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto.
+assert (In x (mapi f m)) by (exists b; auto).
+destruct (mapi_2 H1) as (a,H2).
+rewrite (find_1 H2) in H0; discriminate.
+Qed.
+
+Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
+ (forall x y e, E.eq x y -> f x e = f y e) ->
+ MapsTo x e m -> MapsTo x (f x e) (mapi f m).
+Proof.
+intros.
+destruct (mapi_1 f H0) as (y,(H1,H2)).
+replace (f x e) with (f y e) by auto.
+auto.
+Qed.
+
+Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
+ (forall x y e, E.eq x y -> f x e = f y e) ->
+ (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
+Proof.
+split.
+intros.
+destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
+exists a; split; auto.
+subst b; auto.
+intros (a,(H0,H1)).
+subst b.
+apply mapi_1bis; auto.
+Qed.
+
+(** Things are even worse for [map2] : we don't try to state any
+ equivalence, see instead boolean results below. *)
+
+End IffSpec.
+
+(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
+
+Ltac map_iff :=
+ repeat (progress (
+ rewrite add_mapsto_iff || rewrite add_in_iff ||
+ rewrite remove_mapsto_iff || rewrite remove_in_iff ||
+ rewrite empty_mapsto_iff || rewrite empty_in_iff ||
+ rewrite map_mapsto_iff || rewrite map_in_iff ||
+ rewrite mapi_in_iff)).
+
+(** * Specifications written using boolean predicates *)
+
+Section BoolSpec.
+
+Definition eqb x y := if E.eq_dec x y then true else false.
+
+Lemma mem_find_b : forall (elt:Set)(m:t elt)(x:key), mem x m = if find x m then true else false.
+Proof.
+intros.
+generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
+destruct (find x m); destruct (mem x m); auto.
+intros.
+rewrite <- H0; exists e; rewrite H; auto.
+intuition.
+destruct H0 as (e,H0).
+destruct (H e); intuition discriminate.
+Qed.
+
+Variable elt elt' elt'' : Set.
+Implicit Types m : t elt.
+Implicit Types x y z : key.
+Implicit Types e : elt.
+
+Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
+Proof.
+intros.
+generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
+destruct (mem x m); destruct (mem y m); intuition.
+Qed.
+
+Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
+Proof.
+intros.
+generalize (find_mapsto_iff m x) (find_mapsto_iff m y) (fun e => MapsTo_iff m e H).
+destruct (find x m); destruct (find y m); intros.
+rewrite <- H0; rewrite H2; rewrite H1; auto.
+symmetry; rewrite <- H1; rewrite <- H2; rewrite H0; auto.
+rewrite <- H0; rewrite H2; rewrite H1; auto.
+auto.
+Qed.
+
+Lemma empty_o : forall x, find x (empty elt) = None.
+Proof.
+intros.
+case_eq (find x (empty elt)); intros; auto.
+generalize (find_2 H).
+rewrite empty_mapsto_iff; intuition.
+Qed.
+
+Lemma empty_a : forall x, mem x (empty elt) = false.
+Proof.
+intros.
+case_eq (mem x (empty elt)); intros; auto.
+generalize (mem_2 H).
+rewrite empty_in_iff; intuition.
+Qed.
+
+Lemma add_eq_o : forall m x y e,
+ E.eq x y -> find y (add x e m) = Some e.
+Proof.
+auto.
+Qed.
+
+Lemma add_neq_o : forall m x y e,
+ ~ E.eq x y -> find y (add x e m) = find y m.
+Proof.
+intros.
+case_eq (find y m); intros; auto.
+case_eq (find y (add x e m)); intros; auto.
+rewrite <- H0; symmetry.
+apply find_1; apply add_3 with x e; auto.
+Qed.
+Hint Resolve add_neq_o.
+
+Lemma add_o : forall m x y e,
+ find y (add x e m) = if E.eq_dec x y then Some e else find y m.
+Proof.
+intros; destruct (E.eq_dec x y); auto.
+Qed.
+
+Lemma add_eq_b : forall m x y e,
+ E.eq x y -> mem y (add x e m) = true.
+Proof.
+intros; rewrite mem_find_b; rewrite add_eq_o; auto.
+Qed.
+
+Lemma add_neq_b : forall m x y e,
+ ~E.eq x y -> mem y (add x e m) = mem y m.
+Proof.
+intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
+Qed.
+
+Lemma add_b : forall m x y e,
+ mem y (add x e m) = eqb x y || mem y m.
+Proof.
+intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
+destruct (E.eq_dec x y); simpl; auto.
+Qed.
+
+Lemma remove_eq_o : forall m x y,
+ E.eq x y -> find y (remove x m) = None.
+Proof.
+intros.
+generalize (remove_1 (m:=m) H).
+generalize (find_mapsto_iff (remove x m) y).
+destruct (find y (remove x m)); auto.
+destruct 2.
+exists e; rewrite H0; auto.
+Qed.
+Hint Resolve remove_eq_o.
+
+Lemma remove_neq_o : forall m x y,
+ ~ E.eq x y -> find y (remove x m) = find y m.
+Proof.
+intros.
+case_eq (find y m); intros; auto.
+case_eq (find y (remove x m)); intros; auto.
+rewrite <- H0; symmetry.
+apply find_1; apply remove_3 with x; auto.
+Qed.
+Hint Resolve remove_neq_o.
+
+Lemma remove_o : forall m x y,
+ find y (remove x m) = if E.eq_dec x y then None else find y m.
+Proof.
+intros; destruct (E.eq_dec x y); auto.
+Qed.
+
+Lemma remove_eq_b : forall m x y,
+ E.eq x y -> mem y (remove x m) = false.
+Proof.
+intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
+Qed.
+
+Lemma remove_neq_b : forall m x y,
+ ~ E.eq x y -> mem y (remove x m) = mem y m.
+Proof.
+intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
+Qed.
+
+Lemma remove_b : forall m x y,
+ mem y (remove x m) = negb (eqb x y) && mem y m.
+Proof.
+intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
+destruct (E.eq_dec x y); auto.
+Qed.
+
+Definition option_map (A:Set)(B:Set)(f:A->B)(o:option A) : option B :=
+ match o with
+ | Some a => Some (f a)
+ | None => None
+ end.
+
+Lemma map_o : forall m x (f:elt->elt'),
+ find x (map f m) = option_map f (find x m).
+Proof.
+intros.
+generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
+ (fun b => map_mapsto_iff m x b f).
+destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
+rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
+destruct (H e) as [_ H2].
+rewrite H1 in H2.
+destruct H2 as (a,(_,H2)); auto.
+rewrite H0 in H2; discriminate.
+rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
+Qed.
+
+Lemma map_b : forall m x (f:elt->elt'),
+ mem x (map f m) = mem x m.
+Proof.
+intros; do 2 rewrite mem_find_b; rewrite map_o.
+destruct (find x m); simpl; auto.
+Qed.
+
+Lemma mapi_b : forall m x (f:key->elt->elt'),
+ mem x (mapi f m) = mem x m.
+Proof.
+intros.
+generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
+destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
+symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
+rewrite <- H; rewrite H1; rewrite H0; auto.
+Qed.
+
+Lemma mapi_o : forall m x (f:key->elt->elt'),
+ (forall x y e, E.eq x y -> f x e = f y e) ->
+ find x (mapi f m) = option_map (f x) (find x m).
+Proof.
+intros.
+generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
+ (fun b => mapi_mapsto_iff m x b H).
+destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
+rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
+destruct (H0 e) as [_ H3].
+rewrite H2 in H3.
+destruct H3 as (a,(_,H3)); auto.
+rewrite H1 in H3; discriminate.
+rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
+Qed.
+
+Lemma map2_1bis : forall (m: t elt)(m': t elt') x
+ (f:option elt->option elt'->option elt''),
+ f None None = None ->
+ find x (map2 f m m') = f (find x m) (find x m').
+Proof.
+intros.
+case_eq (find x m); intros.
+rewrite <- H0.
+apply map2_1; auto.
+left; exists e; auto.
+case_eq (find x m'); intros.
+rewrite <- H0; rewrite <- H1.
+apply map2_1; auto.
+right; exists e; auto.
+rewrite H.
+case_eq (find x (map2 f m m')); intros; auto.
+assert (In x (map2 f m m')) by (exists e; auto).
+destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
+rewrite (find_1 H4) in H0; discriminate.
+rewrite (find_1 H4) in H1; discriminate.
+Qed.
+
+Fixpoint findA (A B:Set)(f : A -> bool) (l:list (A*B)) : option B :=
+ match l with
+ | nil => None
+ | (a,b)::l => if f a then Some b else findA f l
+ end.
+
+Lemma findA_NoDupA :
+ forall (A B:Set)
+ (eqA:A->A->Prop)
+ (eqA_sym: forall a b, eqA a b -> eqA b a)
+ (eqA_trans: forall a b c, eqA a b -> eqA b c -> eqA a c)
+ (eqA_dec : forall a a', { eqA a a' }+{~eqA a a' })
+ (l:list (A*B))(x:A)(e:B),
+ NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
+ (InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (x,e) l <->
+ findA (fun y:A => if eqA_dec x y then true else false) l = Some e).
+Proof.
+induction l; simpl; intros.
+split; intros; try discriminate.
+inversion H0.
+destruct a as (y,e').
+inversion_clear H.
+split; intros.
+inversion_clear H.
+simpl in *; destruct H2; subst e'.
+destruct (eqA_dec x y); intuition.
+destruct (eqA_dec x y); simpl.
+destruct H0.
+generalize e0 H2 eqA_trans eqA_sym; clear.
+induction l.
+inversion 2.
+inversion_clear 2; intros; auto.
+destruct a.
+compute in H; destruct H.
+subst b.
+constructor 1; auto.
+simpl.
+apply eqA_trans with x; auto.
+rewrite <- IHl; auto.
+destruct (eqA_dec x y); simpl in *.
+inversion H; clear H; intros; subst e'; auto.
+constructor 2.
+rewrite IHl; auto.
+Qed.
+
+Lemma elements_o : forall m x,
+ find x m = findA (eqb x) (elements m).
+Proof.
+intros.
+assert (forall e, find x m = Some e <-> InA (eq_key_elt (elt:=elt)) (x,e) (elements m)).
+ intros; rewrite <- find_mapsto_iff; apply elements_mapsto_iff.
+assert (NoDupA (eq_key (elt:=elt)) (elements m)).
+ exact (elements_3 m).
+generalize (fun e => @findA_NoDupA _ _ _ E.eq_sym E.eq_trans E.eq_dec (elements m) x e H0).
+unfold eqb.
+destruct (find x m); destruct (findA (fun y : E.t => if E.eq_dec x y then true else false) (elements m));
+ simpl; auto; intros.
+symmetry; rewrite <- H1; rewrite <- H; auto.
+symmetry; rewrite <- H1; rewrite <- H; auto.
+rewrite H; rewrite H1; auto.
+Qed.
+
+Lemma elements_b : forall m x, mem x m = existsb (fun p => eqb x (fst p)) (elements m).
+Proof.
+intros.
+generalize (mem_in_iff m x)(elements_in_iff m x)
+ (existsb_exists (fun p => eqb x (fst p)) (elements m)).
+destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
+symmetry; rewrite H1.
+destruct H0 as (H0,_).
+destruct H0 as (e,He); [ intuition |].
+rewrite InA_alt in He.
+destruct He as ((y,e'),(Ha1,Ha2)).
+compute in Ha1; destruct Ha1; subst e'.
+exists (y,e); split; simpl; auto.
+unfold eqb; destruct (E.eq_dec x y); intuition.
+rewrite <- H; rewrite H0.
+destruct H1 as (H1,_).
+destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
+simpl in Ha2.
+unfold eqb in *; destruct (E.eq_dec x y); auto; try discriminate.
+exists e; rewrite InA_alt.
+exists (y,e); intuition.
+compute; auto.
+Qed.
+
+End BoolSpec.
+
+End Facts.