summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapPositive.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapPositive.v')
-rw-r--r--theories/FSets/FMapPositive.v267
1 files changed, 88 insertions, 179 deletions
diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v
index 7fbc3d47..7c5a4fa1 100644
--- a/theories/FSets/FMapPositive.v
+++ b/theories/FSets/FMapPositive.v
@@ -6,131 +6,36 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* Finite sets library.
- * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
- * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
- * 91405 Orsay, France *)
+(* $Id$ *)
-(* $Id: FMapPositive.v 11699 2008-12-18 11:49:08Z letouzey $ *)
+(** * FMapPositive : an implementation of FMapInterface for [positive] keys. *)
-Require Import Bool.
-Require Import ZArith.
-Require Import OrderedType.
-Require Import OrderedTypeEx.
-Require Import FMapInterface.
+Require Import Bool ZArith OrderedType OrderedTypeEx FMapInterface.
Set Implicit Arguments.
-
Open Local Scope positive_scope.
-(** * An implementation of [FMapInterface.S] for positive keys. *)
+Local Unset Elimination Schemes.
+Local Unset Case Analysis Schemes.
-(** This file is an adaptation to the [FMap] framework of a work by
+(** This file is an adaptation to the [FMap] framework of a work by
Xavier Leroy and Sandrine Blazy (used for building certified compilers).
- Keys are of type [positive], and maps are binary trees: the sequence
+ Keys are of type [positive], and maps are binary trees: the sequence
of binary digits of a positive number corresponds to a path in such a tree.
- This is quite similar to the [IntMap] library, except that no path compression
- is implemented, and that the current file is simple enough to be
+ This is quite similar to the [IntMap] library, except that no path
+ compression is implemented, and that the current file is simple enough to be
self-contained. *)
-(** Even if [positive] can be seen as an ordered type with respect to the
- usual order (see [OrderedTypeEx]), we use here a lexicographic order
- over bits, which is more natural here (lower bits are considered first). *)
-
-Module PositiveOrderedTypeBits <: UsualOrderedType.
- Definition t:=positive.
- Definition eq:=@eq positive.
- Definition eq_refl := @refl_equal t.
- Definition eq_sym := @sym_eq t.
- Definition eq_trans := @trans_eq t.
-
- Fixpoint bits_lt (p q:positive) { struct p } : Prop :=
- match p, q with
- | xH, xI _ => True
- | xH, _ => False
- | xO p, xO q => bits_lt p q
- | xO _, _ => True
- | xI p, xI q => bits_lt p q
- | xI _, _ => False
- end.
-
- Definition lt:=bits_lt.
-
- Lemma bits_lt_trans : forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
- Proof.
- induction x.
- induction y; destruct z; simpl; eauto; intuition.
- induction y; destruct z; simpl; eauto; intuition.
- induction y; destruct z; simpl; eauto; intuition.
- Qed.
-
- Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
- Proof.
- exact bits_lt_trans.
- Qed.
-
- Lemma bits_lt_antirefl : forall x : positive, ~ bits_lt x x.
- Proof.
- induction x; simpl; auto.
- Qed.
-
- Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
- Proof.
- intros; intro.
- rewrite <- H0 in H; clear H0 y.
- unfold lt in H.
- exact (bits_lt_antirefl x H).
- Qed.
-
- Definition compare : forall x y : t, Compare lt eq x y.
- Proof.
- induction x; destruct y.
- (* I I *)
- destruct (IHx y).
- apply LT; auto.
- apply EQ; rewrite e; red; auto.
- apply GT; auto.
- (* I O *)
- apply GT; simpl; auto.
- (* I H *)
- apply GT; simpl; auto.
- (* O I *)
- apply LT; simpl; auto.
- (* O O *)
- destruct (IHx y).
- apply LT; auto.
- apply EQ; rewrite e; red; auto.
- apply GT; auto.
- (* O H *)
- apply LT; simpl; auto.
- (* H I *)
- apply LT; simpl; auto.
- (* H O *)
- apply GT; simpl; auto.
- (* H H *)
- apply EQ; red; auto.
- Qed.
-
- Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
- Proof.
- intros. case_eq ((x ?= y) Eq); intros.
- left. apply Pcompare_Eq_eq; auto.
- right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
- right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
- Qed.
+(** First, some stuff about [positive] *)
-End PositiveOrderedTypeBits.
-
-(** Other positive stuff *)
-
-Fixpoint append (i j : positive) {struct i} : positive :=
+Fixpoint append (i j : positive) : positive :=
match i with
| xH => j
| xI ii => xI (append ii j)
| xO ii => xO (append ii j)
end.
-Lemma append_assoc_0 :
+Lemma append_assoc_0 :
forall (i j : positive), append i (xO j) = append (append i (xO xH)) j.
Proof.
induction i; intros; destruct j; simpl;
@@ -140,7 +45,7 @@ Proof.
auto.
Qed.
-Lemma append_assoc_1 :
+Lemma append_assoc_1 :
forall (i j : positive), append i (xI j) = append (append i (xI xH)) j.
Proof.
induction i; intros; destruct j; simpl;
@@ -159,7 +64,7 @@ Lemma append_neutral_l : forall (i : positive), append xH i = i.
Proof.
simpl; auto.
Qed.
-
+
(** The module of maps over positive keys *)
@@ -174,6 +79,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.
+ Scheme tree_ind := Induction for tree Sort Prop.
+
Definition t := tree.
Section A.
@@ -182,15 +89,15 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Implicit Arguments Leaf [A].
Definition empty : t A := Leaf.
-
- Fixpoint is_empty (m : t A) {struct m} : bool :=
- match m with
+
+ Fixpoint is_empty (m : t A) : bool :=
+ match m with
| Leaf => true
| Node l None r => (is_empty l) && (is_empty r)
| _ => false
end.
- Fixpoint find (i : positive) (m : t A) {struct i} : option A :=
+ Fixpoint find (i : positive) (m : t A) : option A :=
match m with
| Leaf => None
| Node l o r =>
@@ -201,7 +108,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint mem (i : positive) (m : t A) {struct i} : bool :=
+ Fixpoint mem (i : positive) (m : t A) : bool :=
match m with
| Leaf => false
| Node l o r =>
@@ -212,7 +119,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint add (i : positive) (v : A) (m : t A) {struct i} : t A :=
+ Fixpoint add (i : positive) (v : A) (m : t A) : t A :=
match m with
| Leaf =>
match i with
@@ -228,7 +135,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint remove (i : positive) (m : t A) {struct i} : t A :=
+ Fixpoint remove (i : positive) (m : t A) : t A :=
match i with
| xH =>
match m with
@@ -260,8 +167,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
(** [elements] *)
- Fixpoint xelements (m : t A) (i : positive) {struct m}
- : list (positive * A) :=
+ Fixpoint xelements (m : t A) (i : positive) : list (positive * A) :=
match m with
| Leaf => nil
| Node l None r =>
@@ -279,8 +185,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
(** [cardinal] *)
Fixpoint cardinal (m : t A) : nat :=
- match m with
- | Leaf => 0%nat
+ match m with
+ | Leaf => 0%nat
| Node l None r => (cardinal l + cardinal r)%nat
| Node l (Some _) r => S (cardinal l + cardinal r)
end.
@@ -387,7 +293,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
exact (xelements_correct m i xH H).
Qed.
- Fixpoint xfind (i j : positive) (m : t A) {struct j} : option A :=
+ Fixpoint xfind (i j : positive) (m : t A) : option A :=
match i, j with
| _, xH => find i m
| xO ii, xO jj => xfind ii jj m
@@ -400,7 +306,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
- destruct i; congruence.
+ destruct i; simpl in *; auto.
Qed.
Lemma xelements_ii :
@@ -565,7 +471,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
exact (xelements_complete i xH m v H).
Qed.
- Lemma cardinal_1 :
+ Lemma cardinal_1 :
forall (m: t A), cardinal m = length (elements m).
Proof.
unfold elements.
@@ -584,13 +490,17 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Definition Empty m := forall (a : positive)(e:A) , ~ MapsTo a e m.
Definition eq_key (p p':positive*A) := E.eq (fst p) (fst p').
-
- Definition eq_key_elt (p p':positive*A) :=
+
+ Definition eq_key_elt (p p':positive*A) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
Definition lt_key (p p':positive*A) := E.lt (fst p) (fst p').
- Lemma mem_find :
+ Global Instance eqk_equiv : Equivalence eq_key.
+ Global Instance eqke_equiv : Equivalence eq_key_elt.
+ Global Instance ltk_strorder : StrictOrder lt_key.
+
+ Lemma mem_find :
forall m x, mem x m = match find x m with None => false | _ => true end.
Proof.
induction m; destruct x; simpl; auto.
@@ -625,7 +535,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
simpl; generalize H0; rewrite Empty_alt; auto.
Qed.
- Section FMapSpec.
+ Section FMapSpec.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
@@ -633,7 +543,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
destruct 1 as (e0,H0); rewrite H0; auto.
Qed.
- Lemma mem_2 : forall m x, mem x m = true -> In x m.
+ Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
unfold In, MapsTo; intros m x; rewrite mem_find.
destruct (find x m).
@@ -659,7 +569,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
rewrite Empty_alt; apply gempty.
Qed.
- Lemma is_empty_1 : Empty m -> is_empty m = true.
+ Lemma is_empty_1 : Empty m -> is_empty m = true.
Proof.
induction m; simpl; auto.
rewrite Empty_Node.
@@ -699,10 +609,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma remove_1 : E.eq x y -> ~ In y (remove x m).
- Proof.
+ Proof.
intros; intro.
generalize (mem_1 H0).
rewrite mem_find.
+ red in H.
rewrite H.
rewrite grs.
intros; discriminate.
@@ -715,15 +626,15 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
- Proof.
+ Proof.
unfold MapsTo.
destruct (E.eq_dec x y).
subst.
rewrite grs; intros; discriminate.
rewrite gro; auto.
Qed.
-
- Lemma elements_1 :
+
+ Lemma elements_1 :
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
unfold MapsTo.
@@ -735,7 +646,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
apply elements_correct; auto.
Qed.
- Lemma elements_2 :
+ Lemma elements_2 :
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
unfold MapsTo.
@@ -745,7 +656,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
apply elements_complete; auto.
Qed.
- Lemma xelements_bits_lt_1 : forall p p0 q m v,
+ Lemma xelements_bits_lt_1 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xO q))) -> E.bits_lt p0 p.
Proof.
intros.
@@ -754,7 +665,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
induction p; destruct p0; simpl; intros; eauto; try discriminate.
Qed.
- Lemma xelements_bits_lt_2 : forall p p0 q m v,
+ Lemma xelements_bits_lt_2 : forall p p0 q m v,
List.In (p0,v) (xelements m (append p (xI q))) -> E.bits_lt p p0.
Proof.
intros.
@@ -769,8 +680,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
simpl; auto.
destruct o; simpl; intros.
(* Some *)
- apply (SortA_app (eqA:=eq_key_elt)); auto.
- compute; intuition.
+ apply (SortA_app (eqA:=eq_key_elt)); auto with *.
constructor; auto.
apply In_InfA; intros.
destruct y0.
@@ -789,8 +699,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
eapply xelements_bits_lt_1; eauto.
eapply xelements_bits_lt_2; eauto.
(* None *)
- apply (SortA_app (eqA:=eq_key_elt)); auto.
- compute; intuition.
+ apply (SortA_app (eqA:=eq_key_elt)); auto with *.
intros x0 y0.
do 2 rewrite InA_alt.
intros (y1,(Hy1,H)) (y2,(Hy2,H0)).
@@ -802,7 +711,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
eapply xelements_bits_lt_2; eauto.
Qed.
- Lemma elements_3 : sort lt_key (elements m).
+ Lemma elements_3 : sort lt_key (elements m).
Proof.
unfold elements.
apply xelements_sort; auto.
@@ -817,14 +726,14 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End FMapSpec.
(** [map] and [mapi] *)
-
+
Variable B : Type.
Section Mapi.
Variable f : positive -> A -> B.
- Fixpoint xmapi (m : t A) (i : positive) {struct m} : t B :=
+ Fixpoint xmapi (m : t A) (i : positive) : t B :=
match m with
| Leaf => @Leaf B
| Node l o r => Node (xmapi l (append i (xO xH)))
@@ -861,9 +770,9 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
rewrite append_neutral_l; auto.
Qed.
- Lemma mapi_1 :
- forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
- MapsTo x e m ->
+ Lemma mapi_1 :
+ forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
+ MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
intros.
@@ -876,8 +785,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
simpl; auto.
Qed.
- Lemma mapi_2 :
- forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'),
+ Lemma mapi_2 :
+ forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros.
@@ -890,14 +799,14 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
simpl in *; discriminate.
Qed.
- Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros; unfold map.
destruct (mapi_1 (fun _ => f) H); intuition.
Qed.
-
- Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
+
+ Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros; unfold map in *; eapply mapi_2; eauto.
@@ -906,10 +815,10 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section map2.
Variable A B C : Type.
Variable f : option A -> option B -> option C.
-
+
Implicit Arguments Leaf [A].
- Fixpoint xmap2_l (m : t A) {struct m} : t C :=
+ Fixpoint xmap2_l (m : t A) : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r)
@@ -921,7 +830,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
induction i; intros; destruct m; simpl; auto.
Qed.
- Fixpoint xmap2_r (m : t B) {struct m} : t C :=
+ Fixpoint xmap2_r (m : t B) : t C :=
match m with
| Leaf => Leaf
| Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r)
@@ -933,7 +842,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
induction i; intros; destruct m; simpl; auto.
Qed.
- Fixpoint _map2 (m1 : t A)(m2 : t B) {struct m1} : t C :=
+ Fixpoint _map2 (m1 : t A)(m2 : t B) : t C :=
match m1 with
| Leaf => xmap2_r m2
| Node l1 o1 r1 =>
@@ -953,14 +862,14 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End map2.
- Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') :=
+ Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') :=
_map2 (fun o1 o2 => match o1,o2 with None,None => None | _, _ => f o1 o2 end).
Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
- In x m \/ In x m' ->
- find x (map2 f m m') = f (find x m) (find x m').
- Proof.
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x m \/ In x m' ->
+ find x (map2 f m m') = f (find x m) (find x m').
+ Proof.
intros.
unfold map2.
rewrite gmap2; auto.
@@ -973,7 +882,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
+ (x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
intros.
@@ -1031,12 +940,12 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
rewrite xfoldi_1; reflexivity.
Qed.
- Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) {struct m1} : bool :=
- match m1, m2 with
+ Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool :=
+ match m1, m2 with
| Leaf, _ => is_empty m2
| _, Leaf => is_empty m1
- | Node l1 o1 r1, Node l2 o2 r2 =>
- (match o1, o2 with
+ | Node l1 o1 r1, Node l2 o2 r2 =>
+ (match o1, o2 with
| None, None => true
| Some v1, Some v2 => cmp v1 v2
| _, _ => false
@@ -1044,19 +953,19 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
&& equal cmp l1 l2 && equal cmp r1 r2
end.
- Definition Equal (A:Type)(m m':t A) :=
+ Definition Equal (A:Type)(m m':t A) :=
forall y, find y m = find y m'.
- Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp).
- Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
- Equivb cmp m m' -> equal cmp m m' = true.
- Proof.
+ Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
+ Equivb cmp m m' -> equal cmp m m' = true.
+ Proof.
induction m.
(* m = Leaf *)
- destruct 1.
+ destruct 1.
simpl.
apply is_empty_1.
red; red; intros.
@@ -1068,7 +977,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
(* m = Node *)
destruct m'.
(* m' = Leaf *)
- destruct 1.
+ destruct 1.
simpl.
destruct o.
assert (In xH (Leaf A)).
@@ -1105,9 +1014,9 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
apply andb_true_intro; split; auto.
Qed.
- Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
- equal cmp m m' = true -> Equivb cmp m m'.
- Proof.
+ Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
+ equal cmp m m' = true -> Equivb cmp m m'.
+ Proof.
induction m.
(* m = Leaf *)
simpl.
@@ -1181,7 +1090,7 @@ Module PositiveMapAdditionalFacts.
rewrite (IHi m2 v H); congruence.
rewrite (IHi m1 v H); congruence.
Qed.
-
+
Lemma xmap2_lr :
forall (A B : Type)(f g: option A -> option A -> option B)(m : t A),
(forall (i j : option A), f i j = g j i) ->
@@ -1209,7 +1118,7 @@ Module PositiveMapAdditionalFacts.
auto.
rewrite IHm1_1.
rewrite IHm1_2.
- auto.
+ auto.
Qed.
End PositiveMapAdditionalFacts.