summaryrefslogtreecommitdiff
path: root/theories/Classes/RelationClasses.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Classes/RelationClasses.v')
-rw-r--r--theories/Classes/RelationClasses.v400
1 files changed, 400 insertions, 0 deletions
diff --git a/theories/Classes/RelationClasses.v b/theories/Classes/RelationClasses.v
new file mode 100644
index 00000000..a9a53068
--- /dev/null
+++ b/theories/Classes/RelationClasses.v
@@ -0,0 +1,400 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.RelationClasses") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Typeclass-based relations, tactics and standard instances.
+ This is the basic theory needed to formalize morphisms and setoids.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: RelationClasses.v 11092 2008-06-10 18:28:26Z msozeau $ *)
+
+Require Export Coq.Classes.Init.
+Require Import Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+Require Export Coq.Relations.Relation_Definitions.
+
+Notation inverse R := (flip (R:relation _) : relation _).
+
+Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
+
+Definition pointwise_relation {A B : Type} (R : relation B) : relation (A -> B) :=
+ fun f g => forall x : A, R (f x) (g x).
+
+(** These are convertible. *)
+
+Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
+Proof. reflexivity. Qed.
+
+(** We rebind relations in separate classes to be able to overload each proof. *)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Class Reflexive A (R : relation A) :=
+ reflexivity : forall x, R x x.
+
+Class Irreflexive A (R : relation A) :=
+ irreflexivity :> Reflexive A (complement R).
+
+Class Symmetric A (R : relation A) :=
+ symmetry : forall x y, R x y -> R y x.
+
+Class Asymmetric A (R : relation A) :=
+ asymmetry : forall x y, R x y -> R y x -> False.
+
+Class Transitive A (R : relation A) :=
+ transitivity : forall x y z, R x y -> R y z -> R x z.
+
+Implicit Arguments Reflexive [A].
+Implicit Arguments Irreflexive [A].
+Implicit Arguments Symmetric [A].
+Implicit Arguments Asymmetric [A].
+Implicit Arguments Transitive [A].
+
+Hint Resolve @irreflexivity : ord.
+
+Unset Implicit Arguments.
+
+(** We can already dualize all these properties. *)
+
+Program Instance flip_Reflexive [ Reflexive A R ] : Reflexive (flip R) :=
+ reflexivity := reflexivity (R:=R).
+
+Program Instance flip_Irreflexive [ Irreflexive A R ] : Irreflexive (flip R) :=
+ irreflexivity := irreflexivity (R:=R).
+
+Program Instance flip_Symmetric [ Symmetric A R ] : Symmetric (flip R).
+
+ Solve Obligations using unfold flip ; program_simpl ; clapply Symmetric.
+
+Program Instance flip_Asymmetric [ Asymmetric A R ] : Asymmetric (flip R).
+
+ Solve Obligations using program_simpl ; unfold flip in * ; intros ; clapply asymmetry.
+
+Program Instance flip_Transitive [ Transitive A R ] : Transitive (flip R).
+
+ Solve Obligations using unfold flip ; program_simpl ; clapply transitivity.
+
+Program Instance Reflexive_complement_Irreflexive [ Reflexive A (R : relation A) ]
+ : Irreflexive (complement R).
+
+ Next Obligation.
+ Proof.
+ unfold complement.
+ red. intros H.
+ intros H' ; apply H'.
+ apply (reflexivity H).
+ Qed.
+
+
+Program Instance complement_Symmetric [ Symmetric A (R : relation A) ] : Symmetric (complement R).
+
+ Next Obligation.
+ Proof.
+ red ; intros H'.
+ apply (H (symmetry H')).
+ Qed.
+
+(** * Standard instances. *)
+
+Ltac reduce_hyp H :=
+ match type of H with
+ | context [ _ <-> _ ] => fail 1
+ | _ => red in H ; try reduce_hyp H
+ end.
+
+Ltac reduce_goal :=
+ match goal with
+ | [ |- _ <-> _ ] => fail 1
+ | _ => red ; intros ; try reduce_goal
+ end.
+
+Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
+
+Ltac reduce := reduce_goal.
+
+Tactic Notation "apply" "*" constr(t) :=
+ first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
+ refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
+
+Ltac simpl_relation :=
+ unfold flip, impl, arrow ; try reduce ; program_simpl ;
+ try ( solve [ intuition ]).
+
+Ltac obligations_tactic ::= simpl_relation.
+
+(** Logical implication. *)
+
+Program Instance impl_Reflexive : Reflexive impl.
+Program Instance impl_Transitive : Transitive impl.
+
+(** Logical equivalence. *)
+
+Program Instance iff_Reflexive : Reflexive iff.
+Program Instance iff_Symmetric : Symmetric iff.
+Program Instance iff_Transitive : Transitive iff.
+
+(** Leibniz equality. *)
+
+Program Instance eq_Reflexive : Reflexive (@eq A).
+Program Instance eq_Symmetric : Symmetric (@eq A).
+Program Instance eq_Transitive : Transitive (@eq A).
+
+(** Various combinations of reflexivity, symmetry and transitivity. *)
+
+(** A [PreOrder] is both Reflexive and Transitive. *)
+
+Class PreOrder A (R : relation A) : Prop :=
+ PreOrder_Reflexive :> Reflexive R ;
+ PreOrder_Transitive :> Transitive R.
+
+(** A partial equivalence relation is Symmetric and Transitive. *)
+
+Class PER (carrier : Type) (pequiv : relation carrier) : Prop :=
+ PER_Symmetric :> Symmetric pequiv ;
+ PER_Transitive :> Transitive pequiv.
+
+(** Equivalence relations. *)
+
+Class Equivalence (carrier : Type) (equiv : relation carrier) : Prop :=
+ Equivalence_Reflexive :> Reflexive equiv ;
+ Equivalence_Symmetric :> Symmetric equiv ;
+ Equivalence_Transitive :> Transitive equiv.
+
+(** An Equivalence is a PER plus reflexivity. *)
+
+Instance Equivalence_PER [ Equivalence A R ] : PER A R :=
+ PER_Symmetric := Equivalence_Symmetric ;
+ PER_Transitive := Equivalence_Transitive.
+
+(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
+
+Class [ Equivalence A eqA ] => Antisymmetric (R : relation A) :=
+ antisymmetry : forall x y, R x y -> R y x -> eqA x y.
+
+Program Instance flip_antiSymmetric [ eq : Equivalence A eqA, ! Antisymmetric eq R ] :
+ Antisymmetric eq (flip R).
+
+(** Leibinz equality [eq] is an equivalence relation.
+ The instance has low priority as it is always applicable
+ if only the type is constrained. *)
+
+Program Instance eq_equivalence : Equivalence A (@eq A) | 10.
+
+(** Logical equivalence [iff] is an equivalence relation. *)
+
+Program Instance iff_equivalence : Equivalence Prop iff.
+
+(** We now develop a generalization of results on relations for arbitrary predicates.
+ The resulting theory can be applied to homogeneous binary relations but also to
+ arbitrary n-ary predicates. *)
+
+Require Import List.
+
+(* Notation " [ ] " := nil : list_scope. *)
+(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
+
+(* Open Local Scope list_scope. *)
+
+(** A compact representation of non-dependent arities, with the codomain singled-out. *)
+
+Fixpoint arrows (l : list Type) (r : Type) : Type :=
+ match l with
+ | nil => r
+ | A :: l' => A -> arrows l' r
+ end.
+
+(** We can define abbreviations for operation and relation types based on [arrows]. *)
+
+Definition unary_operation A := arrows (cons A nil) A.
+Definition binary_operation A := arrows (cons A (cons A nil)) A.
+Definition ternary_operation A := arrows (cons A (cons A (cons A nil))) A.
+
+(** We define n-ary [predicate]s as functions into [Prop]. *)
+
+Notation predicate l := (arrows l Prop).
+
+(** Unary predicates, or sets. *)
+
+Definition unary_predicate A := predicate (cons A nil).
+
+(** Homogeneous binary relations, equivalent to [relation A]. *)
+
+Definition binary_relation A := predicate (cons A (cons A nil)).
+
+(** We can close a predicate by universal or existential quantification. *)
+
+Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
+ match l with
+ | nil => fun f => f
+ | A :: tl => fun f => forall x : A, predicate_all tl (f x)
+ end.
+
+Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
+ match l with
+ | nil => fun f => f
+ | A :: tl => fun f => exists x : A, predicate_exists tl (f x)
+ end.
+
+(** Pointwise extension of a binary operation on [T] to a binary operation
+ on functions whose codomain is [T].
+ For an operator on [Prop] this lifts the operator to a binary operation. *)
+
+Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
+ (l : list Type) : binary_operation (arrows l T) :=
+ match l with
+ | nil => fun R R' => op R R'
+ | A :: tl => fun R R' =>
+ fun x => pointwise_extension op tl (R x) (R' x)
+ end.
+
+(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
+
+Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
+ match l with
+ | nil => fun R R' => op R R'
+ | A :: tl => fun R R' =>
+ forall x, pointwise_lifting op tl (R x) (R' x)
+ end.
+
+(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
+
+Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
+ pointwise_lifting iff l.
+
+(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
+
+Definition predicate_implication {l : list Type} :=
+ pointwise_lifting impl l.
+
+(** Notations for pointwise equivalence and implication of predicates. *)
+
+Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
+Infix "-∙>" := predicate_implication (at level 70) : predicate_scope.
+
+Open Local Scope predicate_scope.
+
+(** The pointwise liftings of conjunction and disjunctions.
+ Note that these are [binary_operation]s, building new relations out of old ones. *)
+
+Definition predicate_intersection := pointwise_extension and.
+Definition predicate_union := pointwise_extension or.
+
+Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
+Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
+
+(** The always [True] and always [False] predicates. *)
+
+Fixpoint true_predicate {l : list Type} : predicate l :=
+ match l with
+ | nil => True
+ | A :: tl => fun _ => @true_predicate tl
+ end.
+
+Fixpoint false_predicate {l : list Type} : predicate l :=
+ match l with
+ | nil => False
+ | A :: tl => fun _ => @false_predicate tl
+ end.
+
+Notation "∙⊤∙" := true_predicate : predicate_scope.
+Notation "∙⊥∙" := false_predicate : predicate_scope.
+
+(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
+
+Program Instance predicate_equivalence_equivalence :
+ Equivalence (predicate l) predicate_equivalence.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ fold pointwise_lifting.
+ induction l. firstorder.
+ intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
+ firstorder.
+ Qed.
+
+Program Instance predicate_implication_preorder :
+ PreOrder (predicate l) predicate_implication.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ induction l. firstorder.
+ unfold predicate_implication in *. simpl in *.
+ intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
+ Qed.
+
+(** We define the various operations which define the algebra on binary relations,
+ from the general ones. *)
+
+Definition relation_equivalence {A : Type} : relation (relation A) :=
+ @predicate_equivalence (cons _ (cons _ nil)).
+
+Class subrelation {A:Type} (R R' : relation A) : Prop :=
+ is_subrelation : @predicate_implication (cons A (cons A nil)) R R'.
+
+Implicit Arguments subrelation [[A]].
+
+Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
+ @predicate_intersection (cons A (cons A nil)) R R'.
+
+Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
+ @predicate_union (cons A (cons A nil)) R R'.
+
+(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
+
+Instance relation_equivalence_equivalence (A : Type) :
+ Equivalence (relation A) relation_equivalence.
+Proof. intro A. exact (@predicate_equivalence_equivalence (cons A (cons A nil))). Qed.
+
+Instance relation_implication_preorder : PreOrder (relation A) subrelation.
+Proof. intro A. exact (@predicate_implication_preorder (cons A (cons A nil))). Qed.
+
+(** *** Partial Order.
+ A partial order is a preorder which is additionally antisymmetric.
+ We give an equivalent definition, up-to an equivalence relation
+ on the carrier. *)
+
+Class [ equ : Equivalence A eqA, PreOrder A R ] => PartialOrder :=
+ partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
+
+(** The equivalence proof is sufficient for proving that [R] must be a morphism
+ for equivalence (see Morphisms).
+ It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
+
+Instance partial_order_antisym [ PartialOrder A eqA R ] : ! Antisymmetric A eqA R.
+Proof with auto.
+ reduce_goal. pose proof partial_order_equivalence as poe. do 3 red in poe.
+ apply <- poe. firstorder.
+Qed.
+
+(** The partial order defined by subrelation and relation equivalence. *)
+
+Program Instance subrelation_partial_order :
+ ! PartialOrder (relation A) relation_equivalence subrelation.
+
+ Next Obligation.
+ Proof.
+ unfold relation_equivalence in *. firstorder.
+ Qed.
+
+Lemma inverse_pointwise_relation A (R : relation A) :
+ relation_equivalence (pointwise_relation (inverse R)) (inverse (pointwise_relation (A:=A) R)).
+Proof. reflexivity. Qed.