summaryrefslogtreecommitdiff
path: root/theories/Classes/Morphisms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Classes/Morphisms.v')
-rw-r--r--theories/Classes/Morphisms.v577
1 files changed, 306 insertions, 271 deletions
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
index 9d5a3233..1bdce654 100644
--- a/theories/Classes/Morphisms.v
+++ b/theories/Classes/Morphisms.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,7 +18,7 @@ Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.
Require Export Coq.Classes.RelationClasses.
-Generalizable All Variables.
+Generalizable Variables A eqA B C D R RA RB RC m f x y.
Local Obligation Tactic := simpl_relation.
(** * Morphisms.
@@ -29,15 +29,39 @@ Local Obligation Tactic := simpl_relation.
(** A morphism for a relation [R] is a proper element of the relation.
The relation [R] will be instantiated by [respectful] and [A] by an arrow
type for usual morphisms. *)
-
-Class Proper {A} (R : relation A) (m : A) : Prop :=
- proper_prf : R m m.
-
-(** Respectful morphisms. *)
-
-(** The fully dependent version, not used yet. *)
-
-Definition respectful_hetero
+Section Proper.
+ Let U := Type.
+ Context {A B : U}.
+
+ Class Proper (R : relation A) (m : A) : Prop :=
+ proper_prf : R m m.
+
+ (** Every element in the carrier of a reflexive relation is a morphism
+ for this relation. We use a proxy class for this case which is used
+ internally to discharge reflexivity constraints. The [Reflexive]
+ instance will almost always be used, but it won't apply in general to
+ any kind of [Proper (A -> B) _ _] goal, making proof-search much
+ slower. A cleaner solution would be to be able to set different
+ priorities in different hint bases and select a particular hint
+ database for resolution of a type class constraint. *)
+
+ Class ProperProxy (R : relation A) (m : A) : Prop :=
+ proper_proxy : R m m.
+
+ Lemma eq_proper_proxy (x : A) : ProperProxy (@eq A) x.
+ Proof. firstorder. Qed.
+
+ Lemma reflexive_proper_proxy `(Reflexive A R) (x : A) : ProperProxy R x.
+ Proof. firstorder. Qed.
+
+ Lemma proper_proper_proxy x `(Proper R x) : ProperProxy R x.
+ Proof. firstorder. Qed.
+
+ (** Respectful morphisms. *)
+
+ (** The fully dependent version, not used yet. *)
+
+ Definition respectful_hetero
(A B : Type)
(C : A -> Type) (D : B -> Type)
(R : A -> B -> Prop)
@@ -45,18 +69,24 @@ Definition respectful_hetero
(forall x : A, C x) -> (forall x : B, D x) -> Prop :=
fun f g => forall x y, R x y -> R' x y (f x) (g y).
-(** The non-dependent version is an instance where we forget dependencies. *)
+ (** The non-dependent version is an instance where we forget dependencies. *)
+
+ Definition respectful (R : relation A) (R' : relation B) : relation (A -> B) :=
+ Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
-Definition respectful {A B : Type}
- (R : relation A) (R' : relation B) : relation (A -> B) :=
- Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
+End Proper.
-(** Notations reminiscent of the old syntax for declaring morphisms. *)
+(** We favor the use of Leibniz equality or a declared reflexive relation
+ when resolving [ProperProxy], otherwise, if the relation is given (not an evar),
+ we fall back to [Proper]. *)
+Hint Extern 1 (ProperProxy _ _) =>
+ class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances.
-Delimit Scope signature_scope with signature.
+Hint Extern 2 (ProperProxy ?R _) =>
+ not_evar R; class_apply @proper_proper_proxy : typeclass_instances.
-Arguments Proper {A}%type R%signature m.
-Arguments respectful {A B}%type (R R')%signature _ _.
+(** Notations reminiscent of the old syntax for declaring morphisms. *)
+Delimit Scope signature_scope with signature.
Module ProperNotations.
@@ -66,11 +96,14 @@ Module ProperNotations.
Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature))
(right associativity, at level 55) : signature_scope.
- Notation " R --> R' " := (@respectful _ _ (inverse (R%signature)) (R'%signature))
+ Notation " R --> R' " := (@respectful _ _ (flip (R%signature)) (R'%signature))
(right associativity, at level 55) : signature_scope.
End ProperNotations.
+Arguments Proper {A}%type R%signature m.
+Arguments respectful {A B}%type (R R')%signature _ _.
+
Export ProperNotations.
Local Open Scope signature_scope.
@@ -106,80 +139,89 @@ Ltac f_equiv :=
assert (H : (Rx==>R)%signature f f');
unfold Rx in *; clear Rx; [ f_equiv | apply H; clear H; try reflexivity ]
| |- ?R ?f ?f' =>
- try reflexivity;
- change (Proper R f); eauto with typeclass_instances; fail
+ solve [change (Proper R f); eauto with typeclass_instances | reflexivity ]
| _ => idtac
end.
-(** [forall_def] reifies the dependent product as a definition. *)
-
-Definition forall_def {A : Type} (B : A -> Type) : Type := forall x : A, B x.
-
-(** Dependent pointwise lifting of a relation on the range. *)
-
-Definition forall_relation {A : Type} {B : A -> Type}
- (sig : forall a, relation (B a)) : relation (forall x, B x) :=
- fun f g => forall a, sig a (f a) (g a).
-
-Arguments forall_relation {A B}%type sig%signature _ _.
-
-(** Non-dependent pointwise lifting *)
+Section Relations.
+ Let U := Type.
+ Context {A B : U} (P : A -> U).
+
+ (** [forall_def] reifies the dependent product as a definition. *)
+
+ Definition forall_def : Type := forall x : A, P x.
+
+ (** Dependent pointwise lifting of a relation on the range. *)
+
+ Definition forall_relation
+ (sig : forall a, relation (P a)) : relation (forall x, P x) :=
+ fun f g => forall a, sig a (f a) (g a).
+
+ (** Non-dependent pointwise lifting *)
+ Definition pointwise_relation (R : relation B) : relation (A -> B) :=
+ fun f g => forall a, R (f a) (g a).
+
+ Lemma pointwise_pointwise (R : relation B) :
+ relation_equivalence (pointwise_relation R) (@eq A ==> R).
+ Proof. intros. split; reduce; subst; firstorder. Qed.
+
+ (** Subrelations induce a morphism on the identity. *)
+
+ Global Instance subrelation_id_proper `(subrelation A RA RA') : Proper (RA ==> RA') id.
+ Proof. firstorder. Qed.
+
+ (** The subrelation property goes through products as usual. *)
+
+ Lemma subrelation_respectful `(subl : subrelation A RA' RA, subr : subrelation B RB RB') :
+ subrelation (RA ==> RB) (RA' ==> RB').
+ Proof. unfold subrelation in *; firstorder. Qed.
+
+ (** And of course it is reflexive. *)
+
+ Lemma subrelation_refl R : @subrelation A R R.
+ Proof. unfold subrelation; firstorder. Qed.
+
+ (** [Proper] is itself a covariant morphism for [subrelation].
+ We use an unconvertible premise to avoid looping.
+ *)
+
+ Lemma subrelation_proper `(mor : Proper A R' m)
+ `(unc : Unconvertible (relation A) R R')
+ `(sub : subrelation A R' R) : Proper R m.
+ Proof.
+ intros. apply sub. apply mor.
+ Qed.
-Definition pointwise_relation (A : Type) {B : Type} (R : relation B) : relation (A -> B) :=
- Eval compute in forall_relation (B:=fun _ => B) (fun _ => R).
+ Global Instance proper_subrelation_proper :
+ Proper (subrelation ++> eq ==> impl) (@Proper A).
+ Proof. reduce. subst. firstorder. Qed.
-Lemma pointwise_pointwise A B (R : relation B) :
- relation_equivalence (pointwise_relation A R) (@eq A ==> R).
-Proof. intros. split. simpl_relation. firstorder. Qed.
-
-(** We can build a PER on the Coq function space if we have PERs on the domain and
- codomain. *)
+ Global Instance pointwise_subrelation `(sub : subrelation B R R') :
+ subrelation (pointwise_relation R) (pointwise_relation R') | 4.
+ Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
+
+ (** For dependent function types. *)
+ Lemma forall_subrelation (R S : forall x : A, relation (P x)) :
+ (forall a, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S).
+ Proof. reduce. apply H. apply H0. Qed.
+End Relations.
+Typeclasses Opaque respectful pointwise_relation forall_relation.
+Arguments forall_relation {A P}%type sig%signature _ _.
+Arguments pointwise_relation A%type {B}%type R%signature _ _.
+
Hint Unfold Reflexive : core.
Hint Unfold Symmetric : core.
Hint Unfold Transitive : core.
-Typeclasses Opaque respectful pointwise_relation forall_relation.
-
-Program Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').
-
- Next Obligation.
- Proof with auto.
- assert(R x0 x0).
- transitivity y0... symmetry...
- transitivity (y x0)...
- Qed.
-
-(** Subrelations induce a morphism on the identity. *)
-
-Instance subrelation_id_proper `(subrelation A R₁ R₂) : Proper (R₁ ==> R₂) id.
-Proof. firstorder. Qed.
-
-(** The subrelation property goes through products as usual. *)
-
-Lemma subrelation_respectful `(subl : subrelation A R₂ R₁, subr : subrelation B S₁ S₂) :
- subrelation (R₁ ==> S₁) (R₂ ==> S₂).
-Proof. simpl_relation. apply subr. apply H. apply subl. apply H0. Qed.
-
-(** And of course it is reflexive. *)
-
-Lemma subrelation_refl A R : @subrelation A R R.
-Proof. simpl_relation. Qed.
-
+(** Resolution with subrelation: favor decomposing products over applying reflexivity
+ for unconstrained goals. *)
Ltac subrelation_tac T U :=
(is_ground T ; is_ground U ; class_apply @subrelation_refl) ||
class_apply @subrelation_respectful || class_apply @subrelation_refl.
Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances.
-(** [Proper] is itself a covariant morphism for [subrelation]. *)
-
-Lemma subrelation_proper `(mor : Proper A R₁ m, unc : Unconvertible (relation A) R₁ R₂,
- sub : subrelation A R₁ R₂) : Proper R₂ m.
-Proof.
- intros. apply sub. apply mor.
-Qed.
-
CoInductive apply_subrelation : Prop := do_subrelation.
Ltac proper_subrelation :=
@@ -189,117 +231,112 @@ Ltac proper_subrelation :=
Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances.
-Instance proper_subrelation_proper :
- Proper (subrelation ++> eq ==> impl) (@Proper A).
-Proof. reduce. subst. firstorder. Qed.
-
(** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *)
Instance iff_impl_subrelation : subrelation iff impl | 2.
Proof. firstorder. Qed.
-Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl) | 2.
+Instance iff_flip_impl_subrelation : subrelation iff (flip impl) | 2.
Proof. firstorder. Qed.
-Instance pointwise_subrelation {A} `(sub : subrelation B R R') :
- subrelation (pointwise_relation A R) (pointwise_relation A R') | 4.
-Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
-
-(** For dependent function types. *)
-Lemma forall_subrelation A (B : A -> Type) (R S : forall x : A, relation (B x)) :
- (forall a, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S).
-Proof. reduce. apply H. apply H0. Qed.
-
(** We use an extern hint to help unification. *)
Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) =>
apply (@forall_subrelation A B R S) ; intro : typeclass_instances.
-(** Any symmetric relation is equal to its inverse. *)
-
-Lemma subrelation_symmetric A R `(Symmetric A R) : subrelation (inverse R) R.
-Proof. reduce. red in H0. symmetry. assumption. Qed.
+Section GenericInstances.
+ (* Share universes *)
+ Let U := Type.
+ Context {A B C : U}.
-Hint Extern 4 (subrelation (inverse _) _) =>
- class_apply @subrelation_symmetric : typeclass_instances.
-
-(** The complement of a relation conserves its proper elements. *)
+ (** We can build a PER on the Coq function space if we have PERs on the domain and
+ codomain. *)
+
+ Program Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').
-Program Definition complement_proper
- `(mR : Proper (A -> A -> Prop) (RA ==> RA ==> iff) R) :
- Proper (RA ==> RA ==> iff) (complement R) := _.
+ Next Obligation.
+ Proof with auto.
+ assert(R x0 x0).
+ transitivity y0... symmetry...
+ transitivity (y x0)...
+ Qed.
- Next Obligation.
+ (** The complement of a relation conserves its proper elements. *)
+
+ Program Definition complement_proper
+ `(mR : Proper (A -> A -> Prop) (RA ==> RA ==> iff) R) :
+ Proper (RA ==> RA ==> iff) (complement R) := _.
+
+ Next Obligation.
Proof.
unfold complement.
pose (mR x y H x0 y0 H0).
intuition.
Qed.
-Hint Extern 1 (Proper _ (complement _)) =>
- apply @complement_proper : typeclass_instances.
-
-(** The [inverse] too, actually the [flip] instance is a bit more general. *)
-
-Program Definition flip_proper
- `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) :
- Proper (RB ==> RA ==> RC) (flip f) := _.
+ (** The [flip] too, actually the [flip] instance is a bit more general. *)
+ Program Definition flip_proper
+ `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) :
+ Proper (RB ==> RA ==> RC) (flip f) := _.
+
Next Obligation.
Proof.
apply mor ; auto.
Qed.
-Hint Extern 1 (Proper _ (flip _)) =>
- apply @flip_proper : typeclass_instances.
-(** Every Transitive relation gives rise to a binary morphism on [impl],
+ (** Every Transitive relation gives rise to a binary morphism on [impl],
contravariant in the first argument, covariant in the second. *)
-
-Program Instance trans_contra_co_morphism
- `(Transitive A R) : Proper (R --> R ++> impl) R.
-
+
+ Global Program
+ Instance trans_contra_co_morphism
+ `(Transitive A R) : Proper (R --> R ++> impl) R.
+
Next Obligation.
Proof with auto.
transitivity x...
transitivity x0...
Qed.
-(** Proper declarations for partial applications. *)
+ (** Proper declarations for partial applications. *)
-Program Instance trans_contra_inv_impl_morphism
- `(Transitive A R) : Proper (R --> inverse impl) (R x) | 3.
+ Global Program
+ Instance trans_contra_inv_impl_morphism
+ `(Transitive A R) : Proper (R --> flip impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity y...
Qed.
-Program Instance trans_co_impl_morphism
- `(Transitive A R) : Proper (R ++> impl) (R x) | 3.
+ Global Program
+ Instance trans_co_impl_morphism
+ `(Transitive A R) : Proper (R ++> impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity x0...
Qed.
-Program Instance trans_sym_co_inv_impl_morphism
- `(PER A R) : Proper (R ++> inverse impl) (R x) | 3.
+ Global Program
+ Instance trans_sym_co_inv_impl_morphism
+ `(PER A R) : Proper (R ++> flip impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity y... symmetry...
Qed.
-Program Instance trans_sym_contra_impl_morphism
- `(PER A R) : Proper (R --> impl) (R x) | 3.
+ Global Program Instance trans_sym_contra_impl_morphism
+ `(PER A R) : Proper (R --> impl) (R x) | 3.
Next Obligation.
Proof with auto.
transitivity x0... symmetry...
Qed.
-Program Instance per_partial_app_morphism
+ Global Program Instance per_partial_app_morphism
`(PER A R) : Proper (R ==> iff) (R x) | 2.
Next Obligation.
@@ -310,20 +347,21 @@ Program Instance per_partial_app_morphism
symmetry...
Qed.
-(** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof
- to get an [R y z] goal. *)
+ (** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof to get an [R y z] goal. *)
-Program Instance trans_co_eq_inv_impl_morphism
- `(Transitive A R) : Proper (R ==> (@eq A) ==> inverse impl) R | 2.
+ Global Program
+ Instance trans_co_eq_inv_impl_morphism
+ `(Transitive A R) : Proper (R ==> (@eq A) ==> flip impl) R | 2.
Next Obligation.
Proof with auto.
transitivity y...
Qed.
-(** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)
+ (** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)
-Program Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1.
+ Global Program
+ Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1.
Next Obligation.
Proof with auto.
@@ -333,11 +371,11 @@ Program Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1.
transitivity y... transitivity y0... symmetry...
Qed.
-Lemma symmetric_equiv_inverse `(Symmetric A R) : relation_equivalence R (flip R).
-Proof. firstorder. Qed.
+ Lemma symmetric_equiv_flip `(Symmetric A R) : relation_equivalence R (flip R).
+ Proof. firstorder. Qed.
-Program Instance compose_proper A B C R₀ R₁ R₂ :
- Proper ((R₁ ==> R₂) ==> (R₀ ==> R₁) ==> (R₀ ==> R₂)) (@compose A B C).
+ Global Program Instance compose_proper RA RB RC :
+ Proper ((RB ==> RC) ==> (RA ==> RB) ==> (RA ==> RC)) (@compose A B C).
Next Obligation.
Proof.
@@ -345,68 +383,84 @@ Program Instance compose_proper A B C R₀ R₁ R₂ :
unfold compose. apply H. apply H0. apply H1.
Qed.
-(** Coq functions are morphisms for Leibniz equality,
- applied only if really needed. *)
-
-Instance reflexive_eq_dom_reflexive (A : Type) `(Reflexive B R') :
- Reflexive (@Logic.eq A ==> R').
-Proof. simpl_relation. Qed.
+ (** Coq functions are morphisms for Leibniz equality,
+ applied only if really needed. *)
-(** [respectful] is a morphism for relation equivalence. *)
-
-Instance respectful_morphism :
- Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence) (@respectful A B).
-Proof.
- reduce.
- unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
- split ; intros.
+ Global Instance reflexive_eq_dom_reflexive `(Reflexive B R') :
+ Reflexive (@Logic.eq A ==> R').
+ Proof. simpl_relation. Qed.
+ (** [respectful] is a morphism for relation equivalence. *)
+
+ Global Instance respectful_morphism :
+ Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence)
+ (@respectful A B).
+ Proof.
+ reduce.
+ unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
+ split ; intros.
+
rewrite <- H0.
apply H1.
rewrite H.
assumption.
-
+
rewrite H0.
apply H1.
rewrite <- H.
assumption.
-Qed.
-
-(** Every element in the carrier of a reflexive relation is a morphism for this relation.
- We use a proxy class for this case which is used internally to discharge reflexivity constraints.
- The [Reflexive] instance will almost always be used, but it won't apply in general to any kind of
- [Proper (A -> B) _ _] goal, making proof-search much slower. A cleaner solution would be to be able
- to set different priorities in different hint bases and select a particular hint database for
- resolution of a type class constraint.*)
-
-Class ProperProxy {A} (R : relation A) (m : A) : Prop :=
- proper_proxy : R m m.
-
-Lemma eq_proper_proxy A (x : A) : ProperProxy (@eq A) x.
-Proof. firstorder. Qed.
-
-Lemma reflexive_proper_proxy `(Reflexive A R) (x : A) : ProperProxy R x.
-Proof. firstorder. Qed.
-
-Lemma proper_proper_proxy `(Proper A R x) : ProperProxy R x.
-Proof. firstorder. Qed.
-
-Hint Extern 1 (ProperProxy _ _) =>
- class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances.
-Hint Extern 2 (ProperProxy ?R _) => not_evar R; class_apply @proper_proper_proxy : typeclass_instances.
+ Qed.
-(** [R] is Reflexive, hence we can build the needed proof. *)
+ (** [R] is Reflexive, hence we can build the needed proof. *)
-Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) :
- Proper R' (m x).
-Proof. simpl_relation. Qed.
+ Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) :
+ Proper R' (m x).
+ Proof. simpl_relation. Qed.
+
+ Lemma flip_respectful (R : relation A) (R' : relation B) :
+ relation_equivalence (flip (R ==> R')) (flip R ==> flip R').
+ Proof.
+ intros.
+ unfold flip, respectful.
+ split ; intros ; intuition.
+ Qed.
-Class Params {A : Type} (of : A) (arity : nat).
+
+ (** Treating flip: can't make them direct instances as we
+ need at least a [flip] present in the goal. *)
+
+ Lemma flip1 `(subrelation A R' R) : subrelation (flip (flip R')) R.
+ Proof. firstorder. Qed.
+
+ Lemma flip2 `(subrelation A R R') : subrelation R (flip (flip R')).
+ Proof. firstorder. Qed.
+
+ (** That's if and only if *)
+
+ Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R.
+ Proof. simpl_relation. Qed.
+
+ (** Once we have normalized, we will apply this instance to simplify the problem. *)
+
+ Definition proper_flip_proper `(mor : Proper A R m) : Proper (flip R) m := mor.
+
+ (** Every reflexive relation gives rise to a morphism,
+ only for immediately solving goals without variables. *)
+
+ Lemma reflexive_proper `{Reflexive A R} (x : A) : Proper R x.
+ Proof. firstorder. Qed.
+
+ Lemma proper_eq (x : A) : Proper (@eq A) x.
+ Proof. intros. apply reflexive_proper. Qed.
+
+End GenericInstances.
Class PartialApplication.
CoInductive normalization_done : Prop := did_normalization.
+Class Params {A : Type} (of : A) (arity : nat).
+
Ltac partial_application_tactic :=
let rec do_partial_apps H m cont :=
match m with
@@ -450,68 +504,6 @@ Ltac partial_application_tactic :=
end
end.
-Hint Extern 4 (@Proper _ _ _) => partial_application_tactic : typeclass_instances.
-
-Lemma inverse_respectful : forall (A : Type) (R : relation A) (B : Type) (R' : relation B),
- relation_equivalence (inverse (R ==> R')) (inverse R ==> inverse R').
-Proof.
- intros.
- unfold flip, respectful.
- split ; intros ; intuition.
-Qed.
-
-(** Special-purpose class to do normalization of signatures w.r.t. inverse. *)
-
-Class Normalizes (A : Type) (m : relation A) (m' : relation A) : Prop :=
- normalizes : relation_equivalence m m'.
-
-(** Current strategy: add [inverse] everywhere and reduce using [subrelation]
- afterwards. *)
-
-Lemma inverse_atom A R : Normalizes A R (inverse (inverse R)).
-Proof.
- firstorder.
-Qed.
-
-Lemma inverse_arrow `(NA : Normalizes A R (inverse R'''), NB : Normalizes B R' (inverse R'')) :
- Normalizes (A -> B) (R ==> R') (inverse (R''' ==> R'')%signature).
-Proof. unfold Normalizes in *. intros.
- rewrite NA, NB. firstorder.
-Qed.
-
-Ltac inverse :=
- match goal with
- | [ |- Normalizes _ (respectful _ _) _ ] => class_apply @inverse_arrow
- | _ => class_apply @inverse_atom
- end.
-
-Hint Extern 1 (Normalizes _ _ _) => inverse : typeclass_instances.
-
-(** Treating inverse: can't make them direct instances as we
- need at least a [flip] present in the goal. *)
-
-Lemma inverse1 `(subrelation A R' R) : subrelation (inverse (inverse R')) R.
-Proof. firstorder. Qed.
-
-Lemma inverse2 `(subrelation A R R') : subrelation R (inverse (inverse R')).
-Proof. firstorder. Qed.
-
-Hint Extern 1 (subrelation (flip _) _) => class_apply @inverse1 : typeclass_instances.
-Hint Extern 1 (subrelation _ (flip _)) => class_apply @inverse2 : typeclass_instances.
-
-(** That's if and only if *)
-
-Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R.
-Proof. simpl_relation. Qed.
-
-(* Hint Extern 3 (subrelation eq ?R) => not_evar R ; class_apply eq_subrelation : typeclass_instances. *)
-
-(** Once we have normalized, we will apply this instance to simplify the problem. *)
-
-Definition proper_inverse_proper `(mor : Proper A R m) : Proper (inverse R) m := mor.
-
-Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_inverse_proper : typeclass_instances.
-
(** Bootstrap !!! *)
Instance proper_proper : Proper (relation_equivalence ==> eq ==> iff) (@Proper A).
@@ -525,46 +517,88 @@ Proof.
apply H0.
Qed.
-Lemma proper_normalizes_proper `(Normalizes A R0 R1, Proper A R1 m) : Proper R0 m.
-Proof.
- red in H, H0.
- setoid_rewrite H.
- assumption.
-Qed.
-
-Ltac proper_normalization :=
+Ltac proper_reflexive :=
match goal with
| [ _ : normalization_done |- _ ] => fail 1
- | [ _ : apply_subrelation |- @Proper _ ?R _ ] => let H := fresh "H" in
- set(H:=did_normalization) ; class_apply @proper_normalizes_proper
+ | _ => class_apply proper_eq || class_apply @reflexive_proper
end.
-Hint Extern 6 (@Proper _ _ _) => proper_normalization : typeclass_instances.
-(** Every reflexive relation gives rise to a morphism, only for immediately solving goals without variables. *)
+Hint Extern 1 (subrelation (flip _) _) => class_apply @flip1 : typeclass_instances.
+Hint Extern 1 (subrelation _ (flip _)) => class_apply @flip2 : typeclass_instances.
-Lemma reflexive_proper `{Reflexive A R} (x : A)
- : Proper R x.
-Proof. firstorder. Qed.
+Hint Extern 1 (Proper _ (complement _)) => apply @complement_proper
+ : typeclass_instances.
+Hint Extern 1 (Proper _ (flip _)) => apply @flip_proper
+ : typeclass_instances.
+Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_flip_proper
+ : typeclass_instances.
+Hint Extern 4 (@Proper _ _ _) => partial_application_tactic
+ : typeclass_instances.
+Hint Extern 7 (@Proper _ _ _) => proper_reflexive
+ : typeclass_instances.
-Lemma proper_eq A (x : A) : Proper (@eq A) x.
-Proof. intros. apply reflexive_proper. Qed.
+(** Special-purpose class to do normalization of signatures w.r.t. flip. *)
-Ltac proper_reflexive :=
+Section Normalize.
+ Context (A : Type).
+
+ Class Normalizes (m : relation A) (m' : relation A) : Prop :=
+ normalizes : relation_equivalence m m'.
+
+ (** Current strategy: add [flip] everywhere and reduce using [subrelation]
+ afterwards. *)
+
+ Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
+ Proof.
+ red in H, H0.
+ rewrite H.
+ assumption.
+ Qed.
+
+ Lemma flip_atom R : Normalizes R (flip (flip R)).
+ Proof.
+ firstorder.
+ Qed.
+
+End Normalize.
+
+Lemma flip_arrow {A : Type} {B : Type}
+ `(NA : Normalizes A R (flip R'''), NB : Normalizes B R' (flip R'')) :
+ Normalizes (A -> B) (R ==> R') (flip (R''' ==> R'')%signature).
+Proof.
+ unfold Normalizes in *. intros.
+ unfold relation_equivalence in *.
+ unfold predicate_equivalence in *. simpl in *.
+ unfold respectful. unfold flip in *. firstorder.
+ apply NB. apply H. apply NA. apply H0.
+ apply NB. apply H. apply NA. apply H0.
+Qed.
+
+Ltac normalizes :=
match goal with
- | [ _ : normalization_done |- _ ] => fail 1
- | _ => class_apply proper_eq || class_apply @reflexive_proper
+ | [ |- Normalizes _ (respectful _ _) _ ] => class_apply @flip_arrow
+ | _ => class_apply @flip_atom
end.
-Hint Extern 7 (@Proper _ _ _) => proper_reflexive : typeclass_instances.
+Ltac proper_normalization :=
+ match goal with
+ | [ _ : normalization_done |- _ ] => fail 1
+ | [ _ : apply_subrelation |- @Proper _ ?R _ ] =>
+ let H := fresh "H" in
+ set(H:=did_normalization) ; class_apply @proper_normalizes_proper
+ end.
+Hint Extern 1 (Normalizes _ _ _) => normalizes : typeclass_instances.
+Hint Extern 6 (@Proper _ _ _) => proper_normalization
+ : typeclass_instances.
(** When the relation on the domain is symmetric, we can
- inverse the relation on the codomain. Same for binary functions. *)
+ flip the relation on the codomain. Same for binary functions. *)
Lemma proper_sym_flip :
forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f),
- Proper (R1==>inverse R2) f.
+ Proper (R1==>flip R2) f.
Proof.
intros A R1 Sym B R2 f Hf.
intros x x' Hxx'. apply Hf, Sym, Hxx'.
@@ -572,7 +606,7 @@ Qed.
Lemma proper_sym_flip_2 :
forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f),
- Proper (R1==>R2==>inverse R3) f.
+ Proper (R1==>R2==>flip R3) f.
Proof.
intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
intros x x' Hxx' y y' Hyy'. apply Hf; auto.
@@ -627,8 +661,6 @@ apply partial_order_antisym; auto.
rewrite Hxz; auto.
Qed.
-Hint Extern 4 (StrictOrder (relation_conjunction _ _)) =>
- class_apply PartialOrder_StrictOrder : typeclass_instances.
(** From a [StrictOrder] to the corresponding [PartialOrder]:
[le = lt \/ eq].
@@ -659,5 +691,8 @@ elim (StrictOrder_Irreflexive x).
transitivity y; auto.
Qed.
+Hint Extern 4 (StrictOrder (relation_conjunction _ _)) =>
+ class_apply PartialOrder_StrictOrder : typeclass_instances.
+
Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) =>
class_apply StrictOrder_PartialOrder : typeclass_instances.