summaryrefslogtreecommitdiff
path: root/theories/Classes/CRelationClasses.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Classes/CRelationClasses.v')
-rw-r--r--theories/Classes/CRelationClasses.v359
1 files changed, 359 insertions, 0 deletions
diff --git a/theories/Classes/CRelationClasses.v b/theories/Classes/CRelationClasses.v
new file mode 100644
index 00000000..35b2b8a3
--- /dev/null
+++ b/theories/Classes/CRelationClasses.v
@@ -0,0 +1,359 @@
+(* -*- coding: utf-8 -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * Typeclass-based relations, tactics and standard instances
+
+ This is the basic theory needed to formalize morphisms and setoids.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - University Paris Sud
+*)
+
+Require Export Coq.Classes.Init.
+Require Import Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+
+Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
+
+Set Universe Polymorphism.
+
+Definition crelation (A : Type) := A -> A -> Type.
+
+Definition arrow (A B : Type) := A -> B.
+
+Definition flip {A B C : Type} (f : A -> B -> C) := fun x y => f y x.
+
+Definition iffT (A B : Type) := ((A -> B) * (B -> A))%type.
+
+(** We allow to unfold the [crelation] definition while doing morphism search. *)
+
+Section Defs.
+ Context {A : Type}.
+
+ (** We rebind crelational properties in separate classes to be able to overload each proof. *)
+
+ Class Reflexive (R : crelation A) :=
+ reflexivity : forall x : A, R x x.
+
+ Definition complement (R : crelation A) : crelation A :=
+ fun x y => R x y -> False.
+
+ (** Opaque for proof-search. *)
+ Typeclasses Opaque complement iffT.
+
+ (** These are convertible. *)
+ Lemma complement_inverse R : complement (flip R) = flip (complement R).
+ Proof. reflexivity. Qed.
+
+ Class Irreflexive (R : crelation A) :=
+ irreflexivity : Reflexive (complement R).
+
+ Class Symmetric (R : crelation A) :=
+ symmetry : forall {x y}, R x y -> R y x.
+
+ Class Asymmetric (R : crelation A) :=
+ asymmetry : forall {x y}, R x y -> (complement R y x : Type).
+
+ Class Transitive (R : crelation A) :=
+ transitivity : forall {x y z}, R x y -> R y z -> R x z.
+
+ (** Various combinations of reflexivity, symmetry and transitivity. *)
+
+ (** A [PreOrder] is both Reflexive and Transitive. *)
+
+ Class PreOrder (R : crelation A) := {
+ PreOrder_Reflexive :> Reflexive R | 2 ;
+ PreOrder_Transitive :> Transitive R | 2 }.
+
+ (** A [StrictOrder] is both Irreflexive and Transitive. *)
+
+ Class StrictOrder (R : crelation A) := {
+ StrictOrder_Irreflexive :> Irreflexive R ;
+ StrictOrder_Transitive :> Transitive R }.
+
+ (** By definition, a strict order is also asymmetric *)
+ Global Instance StrictOrder_Asymmetric `(StrictOrder R) : Asymmetric R.
+ Proof. firstorder. Qed.
+
+ (** A partial equivalence crelation is Symmetric and Transitive. *)
+
+ Class PER (R : crelation A) := {
+ PER_Symmetric :> Symmetric R | 3 ;
+ PER_Transitive :> Transitive R | 3 }.
+
+ (** Equivalence crelations. *)
+
+ Class Equivalence (R : crelation A) := {
+ Equivalence_Reflexive :> Reflexive R ;
+ Equivalence_Symmetric :> Symmetric R ;
+ Equivalence_Transitive :> Transitive R }.
+
+ (** An Equivalence is a PER plus reflexivity. *)
+
+ Global Instance Equivalence_PER {R} `(Equivalence R) : PER R | 10 :=
+ { PER_Symmetric := Equivalence_Symmetric ;
+ PER_Transitive := Equivalence_Transitive }.
+
+ (** We can now define antisymmetry w.r.t. an equivalence crelation on the carrier. *)
+
+ Class Antisymmetric eqA `{equ : Equivalence eqA} (R : crelation A) :=
+ antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.
+
+ Class subrelation (R R' : crelation A) :=
+ is_subrelation : forall {x y}, R x y -> R' x y.
+
+ (** Any symmetric crelation is equal to its inverse. *)
+
+ Lemma subrelation_symmetric R `(Symmetric R) : subrelation (flip R) R.
+ Proof. hnf. intros x y H'. red in H'. apply symmetry. assumption. Qed.
+
+ Section flip.
+
+ Lemma flip_Reflexive `{Reflexive R} : Reflexive (flip R).
+ Proof. tauto. Qed.
+
+ Program Definition flip_Irreflexive `(Irreflexive R) : Irreflexive (flip R) :=
+ irreflexivity (R:=R).
+
+ Program Definition flip_Symmetric `(Symmetric R) : Symmetric (flip R) :=
+ fun x y H => symmetry (R:=R) H.
+
+ Program Definition flip_Asymmetric `(Asymmetric R) : Asymmetric (flip R) :=
+ fun x y H H' => asymmetry (R:=R) H H'.
+
+ Program Definition flip_Transitive `(Transitive R) : Transitive (flip R) :=
+ fun x y z H H' => transitivity (R:=R) H' H.
+
+ Program Definition flip_Antisymmetric `(Antisymmetric eqA R) :
+ Antisymmetric eqA (flip R).
+ Proof. firstorder. Qed.
+
+ (** Inversing the larger structures *)
+
+ Lemma flip_PreOrder `(PreOrder R) : PreOrder (flip R).
+ Proof. firstorder. Qed.
+
+ Lemma flip_StrictOrder `(StrictOrder R) : StrictOrder (flip R).
+ Proof. firstorder. Qed.
+
+ Lemma flip_PER `(PER R) : PER (flip R).
+ Proof. firstorder. Qed.
+
+ Lemma flip_Equivalence `(Equivalence R) : Equivalence (flip R).
+ Proof. firstorder. Qed.
+
+ End flip.
+
+ Section complement.
+
+ Definition complement_Irreflexive `(Reflexive R)
+ : Irreflexive (complement R).
+ Proof. firstorder. Qed.
+
+ Definition complement_Symmetric `(Symmetric R) : Symmetric (complement R).
+ Proof. firstorder. Qed.
+ End complement.
+
+
+ (** Rewrite crelation on a given support: declares a crelation as a rewrite
+ crelation for use by the generalized rewriting tactic.
+ It helps choosing if a rewrite should be handled
+ by the generalized or the regular rewriting tactic using leibniz equality.
+ Users can declare an [RewriteRelation A RA] anywhere to declare default
+ crelations. This is also done automatically by the [Declare Relation A RA]
+ commands. *)
+
+ Class RewriteRelation (RA : crelation A).
+
+ (** Any [Equivalence] declared in the context is automatically considered
+ a rewrite crelation. *)
+
+ Global Instance equivalence_rewrite_crelation `(Equivalence eqA) : RewriteRelation eqA.
+
+ (** Leibniz equality. *)
+ Section Leibniz.
+ Global Instance eq_Reflexive : Reflexive (@eq A) := @eq_refl A.
+ Global Instance eq_Symmetric : Symmetric (@eq A) := @eq_sym A.
+ Global Instance eq_Transitive : Transitive (@eq A) := @eq_trans A.
+
+ (** Leibinz equality [eq] is an equivalence crelation.
+ The instance has low priority as it is always applicable
+ if only the type is constrained. *)
+
+ Global Program Instance eq_equivalence : Equivalence (@eq A) | 10.
+ End Leibniz.
+
+End Defs.
+
+(** Default rewrite crelations handled by [setoid_rewrite]. *)
+Instance: RewriteRelation impl.
+Instance: RewriteRelation iff.
+
+(** Hints to drive the typeclass resolution avoiding loops
+ due to the use of full unification. *)
+Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
+Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
+Hint Extern 3 (Irreflexive (complement _)) => class_apply complement_Irreflexive : typeclass_instances.
+
+Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
+Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
+Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
+Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
+Hint Extern 3 (Antisymmetric (flip _)) => class_apply flip_Antisymmetric : typeclass_instances.
+Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
+Hint Extern 3 (StrictOrder (flip _)) => class_apply flip_StrictOrder : typeclass_instances.
+Hint Extern 3 (PreOrder (flip _)) => class_apply flip_PreOrder : typeclass_instances.
+
+Hint Extern 4 (subrelation (flip _) _) =>
+ class_apply @subrelation_symmetric : typeclass_instances.
+
+Hint Resolve irreflexivity : ord.
+
+Unset Implicit Arguments.
+
+(** A HintDb for crelations. *)
+
+Ltac solve_crelation :=
+ match goal with
+ | [ |- ?R ?x ?x ] => reflexivity
+ | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
+ end.
+
+Hint Extern 4 => solve_crelation : crelations.
+
+(** We can already dualize all these properties. *)
+
+(** * Standard instances. *)
+
+Ltac reduce_hyp H :=
+ match type of H with
+ | context [ _ <-> _ ] => fail 1
+ | _ => red in H ; try reduce_hyp H
+ end.
+
+Ltac reduce_goal :=
+ match goal with
+ | [ |- _ <-> _ ] => fail 1
+ | _ => red ; intros ; try reduce_goal
+ end.
+
+Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
+
+Ltac reduce := reduce_goal.
+
+Tactic Notation "apply" "*" constr(t) :=
+ first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
+ refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
+
+Ltac simpl_crelation :=
+ unfold flip, impl, arrow ; try reduce ; program_simpl ;
+ try ( solve [ dintuition ]).
+
+Local Obligation Tactic := simpl_crelation.
+
+(** Logical implication. *)
+
+Program Instance impl_Reflexive : Reflexive impl.
+Program Instance impl_Transitive : Transitive impl.
+
+(** Logical equivalence. *)
+
+Instance iff_Reflexive : Reflexive iff := iff_refl.
+Instance iff_Symmetric : Symmetric iff := iff_sym.
+Instance iff_Transitive : Transitive iff := iff_trans.
+
+(** Logical equivalence [iff] is an equivalence crelation. *)
+
+Program Instance iff_equivalence : Equivalence iff.
+Program Instance arrow_Reflexive : Reflexive arrow.
+Program Instance arrow_Transitive : Transitive arrow.
+
+Instance iffT_Reflexive : Reflexive iffT.
+Proof. firstorder. Defined.
+Instance iffT_Symmetric : Symmetric iffT.
+Proof. firstorder. Defined.
+Instance iffT_Transitive : Transitive iffT.
+Proof. firstorder. Defined.
+
+(** We now develop a generalization of results on crelations for arbitrary predicates.
+ The resulting theory can be applied to homogeneous binary crelations but also to
+ arbitrary n-ary predicates. *)
+
+Local Open Scope list_scope.
+
+(** A compact representation of non-dependent arities, with the codomain singled-out. *)
+
+(** We define the various operations which define the algebra on binary crelations *)
+Section Binary.
+ Context {A : Type}.
+
+ Definition relation_equivalence : crelation (crelation A) :=
+ fun R R' => forall x y, iffT (R x y) (R' x y).
+
+ Global Instance: RewriteRelation relation_equivalence.
+
+ Definition relation_conjunction (R : crelation A) (R' : crelation A) : crelation A :=
+ fun x y => prod (R x y) (R' x y).
+
+ Definition relation_disjunction (R : crelation A) (R' : crelation A) : crelation A :=
+ fun x y => sum (R x y) (R' x y).
+
+ (** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
+
+ Set Automatic Introduction.
+
+ Global Instance relation_equivalence_equivalence :
+ Equivalence relation_equivalence.
+ Proof. split; red; unfold relation_equivalence, iffT. firstorder.
+ firstorder.
+ intros. specialize (X x0 y0). specialize (X0 x0 y0). firstorder.
+ Qed.
+
+ Global Instance relation_implication_preorder : PreOrder (@subrelation A).
+ Proof. firstorder. Qed.
+
+ (** *** Partial Order.
+ A partial order is a preorder which is additionally antisymmetric.
+ We give an equivalent definition, up-to an equivalence crelation
+ on the carrier. *)
+
+ Class PartialOrder eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
+ partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (flip R)).
+
+ (** The equivalence proof is sufficient for proving that [R] must be a
+ morphism for equivalence (see Morphisms). It is also sufficient to
+ show that [R] is antisymmetric w.r.t. [eqA] *)
+
+ Global Instance partial_order_antisym `(PartialOrder eqA R) : ! Antisymmetric A eqA R.
+ Proof with auto.
+ reduce_goal.
+ apply H. firstorder.
+ Qed.
+
+ Lemma PartialOrder_inverse `(PartialOrder eqA R) : PartialOrder eqA (flip R).
+ Proof. unfold flip; constructor; unfold flip. intros. apply H. apply symmetry. apply X.
+ unfold relation_conjunction. intros [H1 H2]. apply H. constructor; assumption. Qed.
+End Binary.
+
+Hint Extern 3 (PartialOrder (flip _)) => class_apply PartialOrder_inverse : typeclass_instances.
+
+(** The partial order defined by subrelation and crelation equivalence. *)
+
+(* Program Instance subrelation_partial_order : *)
+(* ! PartialOrder (crelation A) relation_equivalence subrelation. *)
+(* Obligation Tactic := idtac. *)
+
+(* Next Obligation. *)
+(* Proof. *)
+(* intros x. refine (fun x => x). *)
+(* Qed. *)
+
+Typeclasses Opaque relation_equivalence.
+
+