summaryrefslogtreecommitdiff
path: root/theories/Bool/Bool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Bool/Bool.v')
-rwxr-xr-xtheories/Bool/Bool.v543
1 files changed, 543 insertions, 0 deletions
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
new file mode 100755
index 00000000..854eb9e3
--- /dev/null
+++ b/theories/Bool/Bool.v
@@ -0,0 +1,543 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Bool.v,v 1.29.2.1 2004/07/16 19:31:01 herbelin Exp $ i*)
+
+(** Booleans *)
+
+(** The type [bool] is defined in the prelude as
+ [Inductive bool : Set := true : bool | false : bool] *)
+
+(** Interpretation of booleans as Proposition *)
+Definition Is_true (b:bool) :=
+ match b with
+ | true => True
+ | false => False
+ end.
+Hint Unfold Is_true: bool.
+
+Lemma Is_true_eq_left : forall x:bool, x = true -> Is_true x.
+Proof.
+ intros; rewrite H; auto with bool.
+Qed.
+
+Lemma Is_true_eq_right : forall x:bool, true = x -> Is_true x.
+Proof.
+ intros; rewrite <- H; auto with bool.
+Qed.
+
+Hint Immediate Is_true_eq_right Is_true_eq_left: bool.
+
+(*******************)
+(** Discrimination *)
+(*******************)
+
+Lemma diff_true_false : true <> false.
+Proof.
+unfold not in |- *; intro contr; change (Is_true false) in |- *.
+elim contr; simpl in |- *; trivial with bool.
+Qed.
+Hint Resolve diff_true_false: bool v62.
+
+Lemma diff_false_true : false <> true.
+Proof.
+red in |- *; intros H; apply diff_true_false.
+symmetry in |- *.
+assumption.
+Qed.
+Hint Resolve diff_false_true: bool v62.
+
+Lemma eq_true_false_abs : forall b:bool, b = true -> b = false -> False.
+intros b H; rewrite H; auto with bool.
+Qed.
+Hint Resolve eq_true_false_abs: bool.
+
+Lemma not_true_is_false : forall b:bool, b <> true -> b = false.
+destruct b.
+intros.
+red in H; elim H.
+reflexivity.
+intros abs.
+reflexivity.
+Qed.
+
+Lemma not_false_is_true : forall b:bool, b <> false -> b = true.
+destruct b.
+intros.
+reflexivity.
+intro H; red in H; elim H.
+reflexivity.
+Qed.
+
+(**********************)
+(** Order on booleans *)
+(**********************)
+
+Definition leb (b1 b2:bool) :=
+ match b1 with
+ | true => b2 = true
+ | false => True
+ end.
+Hint Unfold leb: bool v62.
+
+(*************)
+(** Equality *)
+(*************)
+
+Definition eqb (b1 b2:bool) : bool :=
+ match b1, b2 with
+ | true, true => true
+ | true, false => false
+ | false, true => false
+ | false, false => true
+ end.
+
+Lemma eqb_refl : forall x:bool, Is_true (eqb x x).
+destruct x; simpl in |- *; auto with bool.
+Qed.
+
+Lemma eqb_eq : forall x y:bool, Is_true (eqb x y) -> x = y.
+destruct x; destruct y; simpl in |- *; tauto.
+Qed.
+
+Lemma Is_true_eq_true : forall x:bool, Is_true x -> x = true.
+destruct x; simpl in |- *; tauto.
+Qed.
+
+Lemma Is_true_eq_true2 : forall x:bool, x = true -> Is_true x.
+destruct x; simpl in |- *; auto with bool.
+Qed.
+
+Lemma eqb_subst :
+ forall (P:bool -> Prop) (b1 b2:bool), eqb b1 b2 = true -> P b1 -> P b2.
+unfold eqb in |- *.
+intros P b1.
+intros b2.
+case b1.
+case b2.
+trivial with bool.
+intros H.
+inversion_clear H.
+case b2.
+intros H.
+inversion_clear H.
+trivial with bool.
+Qed.
+
+Lemma eqb_reflx : forall b:bool, eqb b b = true.
+intro b.
+case b.
+trivial with bool.
+trivial with bool.
+Qed.
+
+Lemma eqb_prop : forall a b:bool, eqb a b = true -> a = b.
+destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity.
+Qed.
+
+
+(************************)
+(** Logical combinators *)
+(************************)
+
+Definition ifb (b1 b2 b3:bool) : bool :=
+ match b1 with
+ | true => b2
+ | false => b3
+ end.
+
+Definition andb (b1 b2:bool) : bool := ifb b1 b2 false.
+
+Definition orb (b1 b2:bool) : bool := ifb b1 true b2.
+
+Definition implb (b1 b2:bool) : bool := ifb b1 b2 true.
+
+Definition xorb (b1 b2:bool) : bool :=
+ match b1, b2 with
+ | true, true => false
+ | true, false => true
+ | false, true => true
+ | false, false => false
+ end.
+
+Definition negb (b:bool) := match b with
+ | true => false
+ | false => true
+ end.
+
+Infix "||" := orb (at level 50, left associativity) : bool_scope.
+Infix "&&" := andb (at level 40, left associativity) : bool_scope.
+
+Open Scope bool_scope.
+
+Delimit Scope bool_scope with bool.
+
+Bind Scope bool_scope with bool.
+
+(**************************)
+(** Lemmas about [negb] *)
+(**************************)
+
+Lemma negb_intro : forall b:bool, b = negb (negb b).
+Proof.
+destruct b; reflexivity.
+Qed.
+
+Lemma negb_elim : forall b:bool, negb (negb b) = b.
+Proof.
+destruct b; reflexivity.
+Qed.
+
+Lemma negb_orb : forall b1 b2:bool, negb (b1 || b2) = negb b1 && negb b2.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; reflexivity.
+Qed.
+
+Lemma negb_andb : forall b1 b2:bool, negb (b1 && b2) = negb b1 || negb b2.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; reflexivity.
+Qed.
+
+Lemma negb_sym : forall b b':bool, b' = negb b -> b = negb b'.
+Proof.
+destruct b; destruct b'; intros; simpl in |- *; trivial with bool.
+Qed.
+
+Lemma no_fixpoint_negb : forall b:bool, negb b <> b.
+Proof.
+destruct b; simpl in |- *; intro; apply diff_true_false;
+ auto with bool.
+Qed.
+
+Lemma eqb_negb1 : forall b:bool, eqb (negb b) b = false.
+destruct b.
+trivial with bool.
+trivial with bool.
+Qed.
+
+Lemma eqb_negb2 : forall b:bool, eqb b (negb b) = false.
+destruct b.
+trivial with bool.
+trivial with bool.
+Qed.
+
+
+Lemma if_negb :
+ forall (A:Set) (b:bool) (x y:A),
+ (if negb b then x else y) = (if b then y else x).
+Proof.
+ destruct b; trivial.
+Qed.
+
+
+(****************************)
+(** A few lemmas about [or] *)
+(****************************)
+
+Lemma orb_prop : forall a b:bool, a || b = true -> a = true \/ b = true.
+destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
+ auto with bool.
+Qed.
+
+Lemma orb_prop2 : forall a b:bool, Is_true (a || b) -> Is_true a \/ Is_true b.
+destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
+ auto with bool.
+Qed.
+
+Lemma orb_true_intro :
+ forall b1 b2:bool, b1 = true \/ b2 = true -> b1 || b2 = true.
+destruct b1; auto with bool.
+destruct 1; intros.
+elim diff_true_false; auto with bool.
+rewrite H; trivial with bool.
+Qed.
+Hint Resolve orb_true_intro: bool v62.
+
+Lemma orb_b_true : forall b:bool, b || true = true.
+auto with bool.
+Qed.
+Hint Resolve orb_b_true: bool v62.
+
+Lemma orb_true_b : forall b:bool, true || b = true.
+trivial with bool.
+Qed.
+
+Definition orb_true_elim :
+ forall b1 b2:bool, b1 || b2 = true -> {b1 = true} + {b2 = true}.
+destruct b1; simpl in |- *; auto with bool.
+Defined.
+
+Lemma orb_false_intro :
+ forall b1 b2:bool, b1 = false -> b2 = false -> b1 || b2 = false.
+intros b1 b2 H1 H2; rewrite H1; rewrite H2; trivial with bool.
+Qed.
+Hint Resolve orb_false_intro: bool v62.
+
+Lemma orb_b_false : forall b:bool, b || false = b.
+Proof.
+ destruct b; trivial with bool.
+Qed.
+Hint Resolve orb_b_false: bool v62.
+
+Lemma orb_false_b : forall b:bool, false || b = b.
+Proof.
+ destruct b; trivial with bool.
+Qed.
+Hint Resolve orb_false_b: bool v62.
+
+Lemma orb_false_elim :
+ forall b1 b2:bool, b1 || b2 = false -> b1 = false /\ b2 = false.
+Proof.
+ destruct b1.
+ intros; elim diff_true_false; auto with bool.
+ destruct b2.
+ intros; elim diff_true_false; auto with bool.
+ auto with bool.
+Qed.
+
+Lemma orb_neg_b : forall b:bool, b || negb b = true.
+Proof.
+ destruct b; reflexivity.
+Qed.
+Hint Resolve orb_neg_b: bool v62.
+
+Lemma orb_comm : forall b1 b2:bool, b1 || b2 = b2 || b1.
+destruct b1; destruct b2; reflexivity.
+Qed.
+
+Lemma orb_assoc : forall b1 b2 b3:bool, b1 || (b2 || b3) = b1 || b2 || b3.
+Proof.
+ destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Hint Resolve orb_comm orb_assoc orb_b_false orb_false_b: bool v62.
+
+(*****************************)
+(** A few lemmas about [and] *)
+(*****************************)
+
+Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true.
+
+Proof.
+ destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
+ auto with bool.
+Qed.
+Hint Resolve andb_prop: bool v62.
+
+Definition andb_true_eq :
+ forall a b:bool, true = a && b -> true = a /\ true = b.
+Proof.
+ destruct a; destruct b; auto.
+Defined.
+
+Lemma andb_prop2 :
+ forall a b:bool, Is_true (a && b) -> Is_true a /\ Is_true b.
+Proof.
+ destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
+ auto with bool.
+Qed.
+Hint Resolve andb_prop2: bool v62.
+
+Lemma andb_true_intro :
+ forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+Qed.
+Hint Resolve andb_true_intro: bool v62.
+
+Lemma andb_true_intro2 :
+ forall b1 b2:bool, Is_true b1 -> Is_true b2 -> Is_true (b1 && b2).
+Proof.
+ destruct b1; destruct b2; simpl in |- *; tauto.
+Qed.
+Hint Resolve andb_true_intro2: bool v62.
+
+Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
+destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+Qed.
+
+Lemma andb_false_intro2 : forall b1 b2:bool, b2 = false -> b1 && b2 = false.
+destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+Qed.
+
+Lemma andb_b_false : forall b:bool, b && false = false.
+destruct b; auto with bool.
+Qed.
+
+Lemma andb_false_b : forall b:bool, false && b = false.
+trivial with bool.
+Qed.
+
+Lemma andb_b_true : forall b:bool, b && true = b.
+destruct b; auto with bool.
+Qed.
+
+Lemma andb_true_b : forall b:bool, true && b = b.
+trivial with bool.
+Qed.
+
+Definition andb_false_elim :
+ forall b1 b2:bool, b1 && b2 = false -> {b1 = false} + {b2 = false}.
+destruct b1; simpl in |- *; auto with bool.
+Defined.
+Hint Resolve andb_false_elim: bool v62.
+
+Lemma andb_neg_b : forall b:bool, b && negb b = false.
+destruct b; reflexivity.
+Qed.
+Hint Resolve andb_neg_b: bool v62.
+
+Lemma andb_comm : forall b1 b2:bool, b1 && b2 = b2 && b1.
+destruct b1; destruct b2; reflexivity.
+Qed.
+
+Lemma andb_assoc : forall b1 b2 b3:bool, b1 && (b2 && b3) = b1 && b2 && b3.
+destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Hint Resolve andb_comm andb_assoc: bool v62.
+
+(*******************************)
+(** Properties of [xorb] *)
+(*******************************)
+
+Lemma xorb_false : forall b:bool, xorb b false = b.
+Proof.
+ destruct b; trivial.
+Qed.
+
+Lemma false_xorb : forall b:bool, xorb false b = b.
+Proof.
+ destruct b; trivial.
+Qed.
+
+Lemma xorb_true : forall b:bool, xorb b true = negb b.
+Proof.
+ trivial.
+Qed.
+
+Lemma true_xorb : forall b:bool, xorb true b = negb b.
+Proof.
+ destruct b; trivial.
+Qed.
+
+Lemma xorb_nilpotent : forall b:bool, xorb b b = false.
+Proof.
+ destruct b; trivial.
+Qed.
+
+Lemma xorb_comm : forall b b':bool, xorb b b' = xorb b' b.
+Proof.
+ destruct b; destruct b'; trivial.
+Qed.
+
+Lemma xorb_assoc :
+ forall b b' b'':bool, xorb (xorb b b') b'' = xorb b (xorb b' b'').
+Proof.
+ destruct b; destruct b'; destruct b''; trivial.
+Qed.
+
+Lemma xorb_eq : forall b b':bool, xorb b b' = false -> b = b'.
+Proof.
+ destruct b; destruct b'; trivial.
+ unfold xorb in |- *. intros. rewrite H. reflexivity.
+Qed.
+
+Lemma xorb_move_l_r_1 :
+ forall b b' b'':bool, xorb b b' = b'' -> b' = xorb b b''.
+Proof.
+ intros. rewrite <- (false_xorb b'). rewrite <- (xorb_nilpotent b). rewrite xorb_assoc.
+ rewrite H. reflexivity.
+Qed.
+
+Lemma xorb_move_l_r_2 :
+ forall b b' b'':bool, xorb b b' = b'' -> b = xorb b'' b'.
+Proof.
+ intros. rewrite xorb_comm in H. rewrite (xorb_move_l_r_1 b' b b'' H). apply xorb_comm.
+Qed.
+
+Lemma xorb_move_r_l_1 :
+ forall b b' b'':bool, b = xorb b' b'' -> xorb b' b = b''.
+Proof.
+ intros. rewrite H. rewrite <- xorb_assoc. rewrite xorb_nilpotent. apply false_xorb.
+Qed.
+
+Lemma xorb_move_r_l_2 :
+ forall b b' b'':bool, b = xorb b' b'' -> xorb b b'' = b'.
+Proof.
+ intros. rewrite H. rewrite xorb_assoc. rewrite xorb_nilpotent. apply xorb_false.
+Qed.
+
+(*******************************)
+(** De Morgan's law *)
+(*******************************)
+
+Lemma demorgan1 :
+ forall b1 b2 b3:bool, b1 && (b2 || b3) = b1 && b2 || b1 && b3.
+destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Lemma demorgan2 :
+ forall b1 b2 b3:bool, (b1 || b2) && b3 = b1 && b3 || b2 && b3.
+destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Lemma demorgan3 :
+ forall b1 b2 b3:bool, b1 || b2 && b3 = (b1 || b2) && (b1 || b3).
+destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Lemma demorgan4 :
+ forall b1 b2 b3:bool, b1 && b2 || b3 = (b1 || b3) && (b2 || b3).
+destruct b1; destruct b2; destruct b3; reflexivity.
+Qed.
+
+Lemma absoption_andb : forall b1 b2:bool, b1 && (b1 || b2) = b1.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; reflexivity.
+Qed.
+
+Lemma absoption_orb : forall b1 b2:bool, b1 || b1 && b2 = b1.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; reflexivity.
+Qed.
+
+
+(** Misc. equalities between booleans (to be used by Auto) *)
+
+Lemma bool_1 : forall b1 b2:bool, (b1 = true <-> b2 = true) -> b1 = b2.
+Proof.
+ intros b1 b2; case b1; case b2; intuition.
+Qed.
+
+Lemma bool_2 : forall b1 b2:bool, b1 = b2 -> b1 = true -> b2 = true.
+Proof.
+ intros b1 b2; case b1; case b2; intuition.
+Qed.
+
+Lemma bool_3 : forall b:bool, negb b <> true -> b = true.
+Proof.
+ destruct b; intuition.
+Qed.
+
+Lemma bool_4 : forall b:bool, b = true -> negb b <> true.
+Proof.
+ destruct b; intuition.
+Qed.
+
+Lemma bool_5 : forall b:bool, negb b = true -> b <> true.
+Proof.
+ destruct b; intuition.
+Qed.
+
+Lemma bool_6 : forall b:bool, b <> true -> negb b = true.
+Proof.
+ destruct b; intuition.
+Qed.
+
+Hint Resolve bool_1 bool_2 bool_3 bool_4 bool_5 bool_6.