summaryrefslogtreecommitdiff
path: root/theories/Arith/Wf_nat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Wf_nat.v')
-rw-r--r--theories/Arith/Wf_nat.v93
1 files changed, 35 insertions, 58 deletions
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index 8cd195f8..64764830 100644
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(** Well-founded relations and natural numbers *)
-Require Import Lt.
+Require Import PeanoNat Lt.
Local Open Scope nat_scope.
@@ -24,16 +24,12 @@ Definition gtof (a b:A) := f b > f a.
Theorem well_founded_ltof : well_founded ltof.
Proof.
- red.
- cut (forall n (a:A), f a < n -> Acc ltof a).
- intros H a; apply (H (S (f a))); auto with arith.
- induction n.
- intros; absurd (f a < 0); auto with arith.
- intros a ltSma.
- apply Acc_intro.
- unfold ltof; intros b ltfafb.
- apply IHn.
- apply lt_le_trans with (f a); auto with arith.
+ assert (H : forall n (a:A), f a < n -> Acc ltof a).
+ { induction n.
+ - intros; absurd (f a < 0); auto with arith.
+ - intros a Ha. apply Acc_intro. unfold ltof at 1. intros b Hb.
+ apply IHn. apply Nat.lt_le_trans with (f a); auto with arith. }
+ intros a. apply (H (S (f a))). auto with arith.
Defined.
Theorem well_founded_gtof : well_founded gtof.
@@ -67,15 +63,13 @@ Theorem induction_ltof1 :
forall P:A -> Set,
(forall x:A, (forall y:A, ltof y x -> P y) -> P x) -> forall a:A, P a.
Proof.
- intros P F; cut (forall n (a:A), f a < n -> P a).
- intros H a; apply (H (S (f a))); auto with arith.
- induction n.
- intros; absurd (f a < 0); auto with arith.
- intros a ltSma.
- apply F.
- unfold ltof; intros b ltfafb.
- apply IHn.
- apply lt_le_trans with (f a); auto with arith.
+ intros P F.
+ assert (H : forall n (a:A), f a < n -> P a).
+ { induction n.
+ - intros; absurd (f a < 0); auto with arith.
+ - intros a Ha. apply F. unfold ltof. intros b Hb.
+ apply IHn. apply Nat.lt_le_trans with (f a); auto with arith. }
+ intros a. apply (H (S (f a))). auto with arith.
Defined.
Theorem induction_gtof1 :
@@ -108,16 +102,12 @@ Hypothesis H_compat : forall x y:A, R x y -> f x < f y.
Theorem well_founded_lt_compat : well_founded R.
Proof.
- red.
- cut (forall n (a:A), f a < n -> Acc R a).
- intros H a; apply (H (S (f a))); auto with arith.
- induction n.
- intros; absurd (f a < 0); auto with arith.
- intros a ltSma.
- apply Acc_intro.
- intros b ltfafb.
- apply IHn.
- apply lt_le_trans with (f a); auto with arith.
+ assert (H : forall n (a:A), f a < n -> Acc R a).
+ { induction n.
+ - intros; absurd (f a < 0); auto with arith.
+ - intros a Ha. apply Acc_intro. intros b Hb.
+ apply IHn. apply Nat.lt_le_trans with (f a); auto with arith. }
+ intros a. apply (H (S (f a))). auto with arith.
Defined.
End Well_founded_Nat.
@@ -208,6 +198,7 @@ End LT_WF_REL.
Lemma well_founded_inv_rel_inv_lt_rel :
forall (A:Set) (F:A -> nat -> Prop), well_founded (inv_lt_rel A F).
+Proof.
intros; apply (well_founded_inv_lt_rel_compat A (inv_lt_rel A F) F); trivial.
Qed.
@@ -230,34 +221,20 @@ Proof.
intros P Pdec (n0,HPn0).
assert
(forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'')
- \/(forall n', P n' -> n<=n')).
- induction n.
- right.
- intros n' Hn'.
- apply le_O_n.
- destruct IHn.
- left; destruct H as (n', (Hlt', HPn')).
- exists n'; split.
- apply lt_S; assumption.
- assumption.
- destruct (Pdec n).
- left; exists n; split.
- apply lt_n_Sn.
- split; assumption.
- right.
- intros n' Hltn'.
- destruct (le_lt_eq_dec n n') as [Hltn|Heqn].
- apply H; assumption.
- assumption.
- destruct H0.
- rewrite Heqn; assumption.
- destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0];
- repeat split;
- assumption || intros n' (HPn',Hminn'); apply le_antisym; auto.
+ \/ (forall n', P n' -> n<=n')).
+ { induction n.
+ - right. intros. apply Nat.le_0_l.
+ - destruct IHn as [(n' & IH1 & IH2)|IH].
+ + left. exists n'; auto with arith.
+ + destruct (Pdec n) as [HP|HP].
+ * left. exists n; auto with arith.
+ * right. intros n' Hn'.
+ apply Nat.le_neq; split; auto. intros <-. auto. }
+ destruct (H n0) as [(n & H1 & H2 & H3)|H0]; [exists n | exists n0];
+ repeat split; trivial;
+ intros n' (HPn',Hn'); apply Nat.le_antisymm; auto.
Qed.
Unset Implicit Arguments.
-Notation iter_nat := @nat_iter (only parsing).
-Notation iter_nat_plus := @nat_iter_plus (only parsing).
-Notation iter_nat_invariant := @nat_iter_invariant (only parsing).
+Notation iter_nat n A f x := (nat_rect (fun _ => A) x (fun _ => f) n) (only parsing).