summaryrefslogtreecommitdiff
path: root/theories/Arith/Le.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Le.v')
-rw-r--r--theories/Arith/Le.v110
1 files changed, 63 insertions, 47 deletions
diff --git a/theories/Arith/Le.v b/theories/Arith/Le.v
index e95ef408..e8b9e6be 100644
--- a/theories/Arith/Le.v
+++ b/theories/Arith/Le.v
@@ -6,108 +6,124 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Le.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Le.v 9245 2006-10-17 12:53:34Z notin $ i*)
+
+(** Order on natural numbers. [le] is defined in [Init/Peano.v] as:
+<<
+Inductive le (n:nat) : nat -> Prop :=
+ | le_n : n <= n
+ | le_S : forall m:nat, n <= m -> n <= S m
+
+where "n <= m" := (le n m) : nat_scope.
+>>
+ *)
-(** Order on natural numbers *)
Open Local Scope nat_scope.
Implicit Types m n p : nat.
-(** Reflexivity *)
+(** * [le] is a pre-order *)
+(** Reflexivity *)
Theorem le_refl : forall n, n <= n.
Proof.
-exact le_n.
+ exact le_n.
Qed.
(** Transitivity *)
-
Theorem le_trans : forall n m p, n <= m -> m <= p -> n <= p.
Proof.
induction 2; auto.
Qed.
Hint Resolve le_trans: arith v62.
-(** Order, successor and predecessor *)
+(** * Properties of [le] w.r.t. successor, predecessor and 0 *)
-Theorem le_n_S : forall n m, n <= m -> S n <= S m.
+(** Comparison to 0 *)
+
+Theorem le_O_n : forall n, 0 <= n.
Proof.
- induction 1; auto.
+ induction n; auto.
Qed.
-Theorem le_n_Sn : forall n, n <= S n.
+Theorem le_Sn_O : forall n, ~ S n <= 0.
Proof.
- auto.
+ red in |- *; intros n H.
+ change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith.
Qed.
-Theorem le_O_n : forall n, 0 <= n.
+Hint Resolve le_O_n le_Sn_O: arith v62.
+
+Theorem le_n_O_eq : forall n, n <= 0 -> 0 = n.
Proof.
- induction n; auto.
+ induction n; auto with arith.
+ intro; contradiction le_Sn_O with n.
Qed.
+Hint Immediate le_n_O_eq: arith v62.
-Hint Resolve le_n_S le_n_Sn le_O_n le_n_S: arith v62.
-Theorem le_pred_n : forall n, pred n <= n.
+(** [le] and successor *)
+
+Theorem le_n_S : forall n m, n <= m -> S n <= S m.
Proof.
-induction n; auto with arith.
+ induction 1; auto.
Qed.
-Hint Resolve le_pred_n: arith v62.
+
+Theorem le_n_Sn : forall n, n <= S n.
+Proof.
+ auto.
+Qed.
+
+Hint Resolve le_n_S le_n_Sn : arith v62.
Theorem le_Sn_le : forall n m, S n <= m -> n <= m.
Proof.
-intros n m H; apply le_trans with (S n); auto with arith.
+ intros n m H; apply le_trans with (S n); auto with arith.
Qed.
Hint Immediate le_Sn_le: arith v62.
Theorem le_S_n : forall n m, S n <= S m -> n <= m.
Proof.
-intros n m H; change (pred (S n) <= pred (S m)) in |- *.
-destruct H; simpl; auto with arith.
+ intros n m H; change (pred (S n) <= pred (S m)) in |- *.
+ destruct H; simpl; auto with arith.
Qed.
Hint Immediate le_S_n: arith v62.
-Theorem le_pred : forall n m, n <= m -> pred n <= pred m.
+Theorem le_Sn_n : forall n, ~ S n <= n.
Proof.
-destruct n; simpl; auto with arith.
-destruct m; simpl; auto with arith.
+ induction n; auto with arith.
Qed.
+Hint Resolve le_Sn_n: arith v62.
-(** Comparison to 0 *)
+(** [le] and predecessor *)
-Theorem le_Sn_O : forall n, ~ S n <= 0.
+Theorem le_pred_n : forall n, pred n <= n.
Proof.
-red in |- *; intros n H.
-change (IsSucc 0) in |- *; elim H; simpl in |- *; auto with arith.
+ induction n; auto with arith.
Qed.
-Hint Resolve le_Sn_O: arith v62.
+Hint Resolve le_pred_n: arith v62.
-Theorem le_n_O_eq : forall n, n <= 0 -> 0 = n.
+Theorem le_pred : forall n m, n <= m -> pred n <= pred m.
Proof.
-induction n; auto with arith.
-intro; contradiction le_Sn_O with n.
+ destruct n; simpl; auto with arith.
+ destruct m; simpl; auto with arith.
Qed.
-Hint Immediate le_n_O_eq: arith v62.
-(** Negative properties *)
-
-Theorem le_Sn_n : forall n, ~ S n <= n.
-Proof.
-induction n; auto with arith.
-Qed.
-Hint Resolve le_Sn_n: arith v62.
+(** * [le] is a order on [nat] *)
(** Antisymmetry *)
Theorem le_antisym : forall n m, n <= m -> m <= n -> n = m.
Proof.
-intros n m h; destruct h as [| m0 H]; auto with arith.
-intros H1.
-absurd (S m0 <= m0); auto with arith.
-apply le_trans with n; auto with arith.
+ intros n m H; destruct H as [|m' H]; auto with arith.
+ intros H1.
+ absurd (S m' <= m'); auto with arith.
+ apply le_trans with n; auto with arith.
Qed.
Hint Immediate le_antisym: arith v62.
-(** A different elimination principle for the order on natural numbers *)
+
+(** * A different elimination principle for the order on natural numbers *)
Lemma le_elim_rel :
forall P:nat -> nat -> Prop,
@@ -115,7 +131,7 @@ Lemma le_elim_rel :
(forall p (q:nat), p <= q -> P p q -> P (S p) (S q)) ->
forall n m, n <= m -> P n m.
Proof.
-induction n; auto with arith.
-intros m Le.
-elim Le; auto with arith.
-Qed. \ No newline at end of file
+ induction n; auto with arith.
+ intros m Le.
+ elim Le; auto with arith.
+Qed.