summaryrefslogtreecommitdiff
path: root/theories/Arith/Gt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Gt.v')
-rw-r--r--theories/Arith/Gt.v133
1 files changed, 62 insertions, 71 deletions
diff --git a/theories/Arith/Gt.v b/theories/Arith/Gt.v
index afd146e7..e406ff0d 100644
--- a/theories/Arith/Gt.v
+++ b/theories/Arith/Gt.v
@@ -1,154 +1,145 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(** Theorems about [gt] in [nat]. [gt] is defined in [Init/Peano.v] as:
+(** Theorems about [gt] in [nat].
+
+ This file is DEPRECATED now, see module [PeanoNat.Nat] instead,
+ which favor [lt] over [gt].
+
+ [gt] is defined in [Init/Peano.v] as:
<<
Definition gt (n m:nat) := m < n.
>>
*)
-Require Import Le.
-Require Import Lt.
-Require Import Plus.
+Require Import PeanoNat Le Lt Plus.
Local Open Scope nat_scope.
-Implicit Types m n p : nat.
-
(** * Order and successor *)
-Theorem gt_Sn_O : forall n, S n > 0.
-Proof.
- auto with arith.
-Qed.
-Hint Resolve gt_Sn_O: arith v62.
+Theorem gt_Sn_O n : S n > 0.
+Proof Nat.lt_0_succ _.
-Theorem gt_Sn_n : forall n, S n > n.
-Proof.
- auto with arith.
-Qed.
-Hint Resolve gt_Sn_n: arith v62.
+Theorem gt_Sn_n n : S n > n.
+Proof Nat.lt_succ_diag_r _.
-Theorem gt_n_S : forall n m, n > m -> S n > S m.
+Theorem gt_n_S n m : n > m -> S n > S m.
Proof.
- auto with arith.
+ apply Nat.succ_lt_mono.
Qed.
-Hint Resolve gt_n_S: arith v62.
-Lemma gt_S_n : forall n m, S m > S n -> m > n.
+Lemma gt_S_n n m : S m > S n -> m > n.
Proof.
- auto with arith.
+ apply Nat.succ_lt_mono.
Qed.
-Hint Immediate gt_S_n: arith v62.
-Theorem gt_S : forall n m, S n > m -> n > m \/ m = n.
+Theorem gt_S n m : S n > m -> n > m \/ m = n.
Proof.
- intros n m H; unfold gt; apply le_lt_or_eq; auto with arith.
+ intro. now apply Nat.lt_eq_cases, Nat.succ_le_mono.
Qed.
-Lemma gt_pred : forall n m, m > S n -> pred m > n.
+Lemma gt_pred n m : m > S n -> pred m > n.
Proof.
- auto with arith.
+ apply Nat.lt_succ_lt_pred.
Qed.
-Hint Immediate gt_pred: arith v62.
(** * Irreflexivity *)
-Lemma gt_irrefl : forall n, ~ n > n.
-Proof lt_irrefl.
-Hint Resolve gt_irrefl: arith v62.
+Lemma gt_irrefl n : ~ n > n.
+Proof Nat.lt_irrefl _.
(** * Asymmetry *)
-Lemma gt_asym : forall n m, n > m -> ~ m > n.
-Proof fun n m => lt_asym m n.
-
-Hint Resolve gt_asym: arith v62.
+Lemma gt_asym n m : n > m -> ~ m > n.
+Proof Nat.lt_asymm _ _.
(** * Relating strict and large orders *)
-Lemma le_not_gt : forall n m, n <= m -> ~ n > m.
-Proof le_not_lt.
-Hint Resolve le_not_gt: arith v62.
-
-Lemma gt_not_le : forall n m, n > m -> ~ n <= m.
+Lemma le_not_gt n m : n <= m -> ~ n > m.
Proof.
-auto with arith.
+ apply Nat.le_ngt.
Qed.
-Hint Resolve gt_not_le: arith v62.
+Lemma gt_not_le n m : n > m -> ~ n <= m.
+Proof.
+ apply Nat.lt_nge.
+Qed.
-Theorem le_S_gt : forall n m, S n <= m -> m > n.
+Theorem le_S_gt n m : S n <= m -> m > n.
Proof.
- auto with arith.
+ apply Nat.le_succ_l.
Qed.
-Hint Immediate le_S_gt: arith v62.
-Lemma gt_S_le : forall n m, S m > n -> n <= m.
+Lemma gt_S_le n m : S m > n -> n <= m.
Proof.
- intros n p; exact (lt_n_Sm_le n p).
+ apply Nat.succ_le_mono.
Qed.
-Hint Immediate gt_S_le: arith v62.
-Lemma gt_le_S : forall n m, m > n -> S n <= m.
+Lemma gt_le_S n m : m > n -> S n <= m.
Proof.
- auto with arith.
+ apply Nat.le_succ_l.
Qed.
-Hint Resolve gt_le_S: arith v62.
-Lemma le_gt_S : forall n m, n <= m -> S m > n.
+Lemma le_gt_S n m : n <= m -> S m > n.
Proof.
- auto with arith.
+ apply Nat.succ_le_mono.
Qed.
-Hint Resolve le_gt_S: arith v62.
(** * Transitivity *)
-Theorem le_gt_trans : forall n m p, m <= n -> m > p -> n > p.
+Theorem le_gt_trans n m p : m <= n -> m > p -> n > p.
Proof.
- red; intros; apply lt_le_trans with m; auto with arith.
+ intros. now apply Nat.lt_le_trans with m.
Qed.
-Theorem gt_le_trans : forall n m p, n > m -> p <= m -> n > p.
+Theorem gt_le_trans n m p : n > m -> p <= m -> n > p.
Proof.
- red; intros; apply le_lt_trans with m; auto with arith.
+ intros. now apply Nat.le_lt_trans with m.
Qed.
-Lemma gt_trans : forall n m p, n > m -> m > p -> n > p.
+Lemma gt_trans n m p : n > m -> m > p -> n > p.
Proof.
- red; intros n m p H1 H2.
- apply lt_trans with m; auto with arith.
+ intros. now apply Nat.lt_trans with m.
Qed.
-Theorem gt_trans_S : forall n m p, S n > m -> m > p -> n > p.
+Theorem gt_trans_S n m p : S n > m -> m > p -> n > p.
Proof.
- red; intros; apply lt_le_trans with m; auto with arith.
+ intros. apply Nat.lt_le_trans with m; trivial. now apply Nat.succ_le_mono.
Qed.
-Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith v62.
-
(** * Comparison to 0 *)
-Theorem gt_0_eq : forall n, n > 0 \/ 0 = n.
+Theorem gt_0_eq n : n > 0 \/ 0 = n.
Proof.
- intro n; apply gt_S; auto with arith.
+ destruct n; [now right | left; apply Nat.lt_0_succ].
Qed.
(** * Simplification and compatibility *)
-Lemma plus_gt_reg_l : forall n m p, p + n > p + m -> n > m.
+Lemma plus_gt_reg_l n m p : p + n > p + m -> n > m.
Proof.
- red; intros n m p H; apply plus_lt_reg_l with p; auto with arith.
+ apply Nat.add_lt_mono_l.
Qed.
-Lemma plus_gt_compat_l : forall n m p, n > m -> p + n > p + m.
+Lemma plus_gt_compat_l n m p : n > m -> p + n > p + m.
Proof.
- auto with arith.
+ apply Nat.add_lt_mono_l.
Qed.
+
+(** * Hints *)
+
+Hint Resolve gt_Sn_O gt_Sn_n gt_n_S : arith v62.
+Hint Immediate gt_S_n gt_pred : arith v62.
+Hint Resolve gt_irrefl gt_asym : arith v62.
+Hint Resolve le_not_gt gt_not_le : arith v62.
+Hint Immediate le_S_gt gt_S_le : arith v62.
+Hint Resolve gt_le_S le_gt_S : arith v62.
+Hint Resolve gt_trans_S le_gt_trans gt_le_trans: arith v62.
Hint Resolve plus_gt_compat_l: arith v62.
(* begin hide *)