summaryrefslogtreecommitdiff
path: root/theories/Arith/Even.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Even.v')
-rw-r--r--theories/Arith/Even.v305
1 files changed, 305 insertions, 0 deletions
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
new file mode 100644
index 00000000..f7a2ad71
--- /dev/null
+++ b/theories/Arith/Even.v
@@ -0,0 +1,305 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Even.v,v 1.14.2.1 2004/07/16 19:31:00 herbelin Exp $ i*)
+
+(** Here we define the predicates [even] and [odd] by mutual induction
+ and we prove the decidability and the exclusion of those predicates.
+ The main results about parity are proved in the module Div2. *)
+
+Open Local Scope nat_scope.
+
+Implicit Types m n : nat.
+
+Inductive even : nat -> Prop :=
+ | even_O : even 0
+ | even_S : forall n, odd n -> even (S n)
+with odd : nat -> Prop :=
+ odd_S : forall n, even n -> odd (S n).
+
+Hint Constructors even: arith.
+Hint Constructors odd: arith.
+
+Lemma even_or_odd : forall n, even n \/ odd n.
+Proof.
+induction n.
+auto with arith.
+elim IHn; auto with arith.
+Qed.
+
+Lemma even_odd_dec : forall n, {even n} + {odd n}.
+Proof.
+induction n.
+auto with arith.
+elim IHn; auto with arith.
+Qed.
+
+Lemma not_even_and_odd : forall n, even n -> odd n -> False.
+Proof.
+induction n.
+intros. inversion H0.
+intros. inversion H. inversion H0. auto with arith.
+Qed.
+
+Lemma even_plus_aux :
+ forall n m,
+ (odd (n + m) <-> odd n /\ even m \/ even n /\ odd m) /\
+ (even (n + m) <-> even n /\ even m \/ odd n /\ odd m).
+Proof.
+intros n; elim n; simpl in |- *; auto with arith.
+intros m; split; auto.
+split.
+intros H; right; split; auto with arith.
+intros H'; case H'; auto with arith.
+intros H'0; elim H'0; intros H'1 H'2; inversion H'1.
+intros H; elim H; auto.
+split; auto with arith.
+intros H'; elim H'; auto with arith.
+intros H; elim H; auto.
+intros H'0; elim H'0; intros H'1 H'2; inversion H'1.
+intros n0 H' m; elim (H' m); intros H'1 H'2; elim H'1; intros E1 E2; elim H'2;
+ intros E3 E4; clear H'1 H'2.
+split; split.
+intros H'0; case E3.
+inversion H'0; auto.
+intros H; elim H; intros H0 H1; clear H; auto with arith.
+intros H; elim H; intros H0 H1; clear H; auto with arith.
+intros H'0; case H'0; intros C0; case C0; intros C1 C2.
+apply odd_S.
+apply E4; left; split; auto with arith.
+inversion C1; auto.
+apply odd_S.
+apply E4; right; split; auto with arith.
+inversion C1; auto.
+intros H'0.
+case E1.
+inversion H'0; auto.
+intros H; elim H; intros H0 H1; clear H; auto with arith.
+intros H; elim H; intros H0 H1; clear H; auto with arith.
+intros H'0; case H'0; intros C0; case C0; intros C1 C2.
+apply even_S.
+apply E2; left; split; auto with arith.
+inversion C1; auto.
+apply even_S.
+apply E2; right; split; auto with arith.
+inversion C1; auto.
+Qed.
+
+Lemma even_even_plus : forall n m, even n -> even m -> even (n + m).
+Proof.
+intros n m; case (even_plus_aux n m).
+intros H H0; case H0; auto.
+Qed.
+
+Lemma odd_even_plus : forall n m, odd n -> odd m -> even (n + m).
+Proof.
+intros n m; case (even_plus_aux n m).
+intros H H0; case H0; auto.
+Qed.
+
+Lemma even_plus_even_inv_r : forall n m, even (n + m) -> even n -> even m.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'0.
+intros H'1; case H'1; auto.
+intros H0; elim H0; auto.
+intros H0 H1 H2; case (not_even_and_odd n); auto.
+case H0; auto.
+Qed.
+
+Lemma even_plus_even_inv_l : forall n m, even (n + m) -> even m -> even n.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'0.
+intros H'1; case H'1; auto.
+intros H0; elim H0; auto.
+intros H0 H1 H2; case (not_even_and_odd m); auto.
+case H0; auto.
+Qed.
+
+Lemma even_plus_odd_inv_r : forall n m, even (n + m) -> odd n -> odd m.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'0.
+intros H'1; case H'1; auto.
+intros H0 H1 H2; case (not_even_and_odd n); auto.
+case H0; auto.
+intros H0; case H0; auto.
+Qed.
+
+Lemma even_plus_odd_inv_l : forall n m, even (n + m) -> odd m -> odd n.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'0.
+intros H'1; case H'1; auto.
+intros H0 H1 H2; case (not_even_and_odd m); auto.
+case H0; auto.
+intros H0; case H0; auto.
+Qed.
+Hint Resolve even_even_plus odd_even_plus: arith.
+
+Lemma odd_plus_l : forall n m, odd n -> even m -> odd (n + m).
+Proof.
+intros n m; case (even_plus_aux n m).
+intros H; case H; auto.
+Qed.
+
+Lemma odd_plus_r : forall n m, even n -> odd m -> odd (n + m).
+Proof.
+intros n m; case (even_plus_aux n m).
+intros H; case H; auto.
+Qed.
+
+Lemma odd_plus_even_inv_l : forall n m, odd (n + m) -> odd m -> even n.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'.
+intros H'1; case H'1; auto.
+intros H0 H1 H2; case (not_even_and_odd m); auto.
+case H0; auto.
+intros H0; case H0; auto.
+Qed.
+
+Lemma odd_plus_even_inv_r : forall n m, odd (n + m) -> odd n -> even m.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'.
+intros H'1; case H'1; auto.
+intros H0; case H0; auto.
+intros H0 H1 H2; case (not_even_and_odd n); auto.
+case H0; auto.
+Qed.
+
+Lemma odd_plus_odd_inv_l : forall n m, odd (n + m) -> even m -> odd n.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'.
+intros H'1; case H'1; auto.
+intros H0; case H0; auto.
+intros H0 H1 H2; case (not_even_and_odd m); auto.
+case H0; auto.
+Qed.
+
+Lemma odd_plus_odd_inv_r : forall n m, odd (n + m) -> even n -> odd m.
+Proof.
+intros n m H; case (even_plus_aux n m).
+intros H' H'0; elim H'.
+intros H'1; case H'1; auto.
+intros H0 H1 H2; case (not_even_and_odd n); auto.
+case H0; auto.
+intros H0; case H0; auto.
+Qed.
+Hint Resolve odd_plus_l odd_plus_r: arith.
+
+Lemma even_mult_aux :
+ forall n m,
+ (odd (n * m) <-> odd n /\ odd m) /\ (even (n * m) <-> even n \/ even m).
+Proof.
+intros n; elim n; simpl in |- *; auto with arith.
+intros m; split; split; auto with arith.
+intros H'; inversion H'.
+intros H'; elim H'; auto.
+intros n0 H' m; split; split; auto with arith.
+intros H'0.
+elim (even_plus_aux m (n0 * m)); intros H'3 H'4; case H'3; intros H'1 H'2;
+ case H'1; auto.
+intros H'5; elim H'5; intros H'6 H'7; auto with arith.
+split; auto with arith.
+case (H' m).
+intros H'8 H'9; case H'9.
+intros H'10; case H'10; auto with arith.
+intros H'11 H'12; case (not_even_and_odd m); auto with arith.
+intros H'5; elim H'5; intros H'6 H'7; case (not_even_and_odd (n0 * m)); auto.
+case (H' m).
+intros H'8 H'9; case H'9; auto.
+intros H'0; elim H'0; intros H'1 H'2; clear H'0.
+elim (even_plus_aux m (n0 * m)); auto.
+intros H'0 H'3.
+elim H'0.
+intros H'4 H'5; apply H'5; auto.
+left; split; auto with arith.
+case (H' m).
+intros H'6 H'7; elim H'7.
+intros H'8 H'9; apply H'9.
+left.
+inversion H'1; auto.
+intros H'0.
+elim (even_plus_aux m (n0 * m)); intros H'3 H'4; case H'4.
+intros H'1 H'2.
+elim H'1; auto.
+intros H; case H; auto.
+intros H'5; elim H'5; intros H'6 H'7; auto with arith.
+left.
+case (H' m).
+intros H'8; elim H'8.
+intros H'9; elim H'9; auto with arith.
+intros H'0; elim H'0; intros H'1.
+case (even_or_odd m); intros H'2.
+apply even_even_plus; auto.
+case (H' m).
+intros H H0; case H0; auto.
+apply odd_even_plus; auto.
+inversion H'1; case (H' m); auto.
+intros H1; case H1; auto.
+apply even_even_plus; auto.
+case (H' m).
+intros H H0; case H0; auto.
+Qed.
+
+Lemma even_mult_l : forall n m, even n -> even (n * m).
+Proof.
+intros n m; case (even_mult_aux n m); auto.
+intros H H0; case H0; auto.
+Qed.
+
+Lemma even_mult_r : forall n m, even m -> even (n * m).
+Proof.
+intros n m; case (even_mult_aux n m); auto.
+intros H H0; case H0; auto.
+Qed.
+Hint Resolve even_mult_l even_mult_r: arith.
+
+Lemma even_mult_inv_r : forall n m, even (n * m) -> odd n -> even m.
+Proof.
+intros n m H' H'0.
+case (even_mult_aux n m).
+intros H'1 H'2; elim H'2.
+intros H'3; elim H'3; auto.
+intros H; case (not_even_and_odd n); auto.
+Qed.
+
+Lemma even_mult_inv_l : forall n m, even (n * m) -> odd m -> even n.
+Proof.
+intros n m H' H'0.
+case (even_mult_aux n m).
+intros H'1 H'2; elim H'2.
+intros H'3; elim H'3; auto.
+intros H; case (not_even_and_odd m); auto.
+Qed.
+
+Lemma odd_mult : forall n m, odd n -> odd m -> odd (n * m).
+Proof.
+intros n m; case (even_mult_aux n m); intros H; case H; auto.
+Qed.
+Hint Resolve even_mult_l even_mult_r odd_mult: arith.
+
+Lemma odd_mult_inv_l : forall n m, odd (n * m) -> odd n.
+Proof.
+intros n m H'.
+case (even_mult_aux n m).
+intros H'1 H'2; elim H'1.
+intros H'3; elim H'3; auto.
+Qed.
+
+Lemma odd_mult_inv_r : forall n m, odd (n * m) -> odd m.
+Proof.
+intros n m H'.
+case (even_mult_aux n m).
+intros H'1 H'2; elim H'1.
+intros H'3; elim H'3; auto.
+Qed.