summaryrefslogtreecommitdiff
path: root/theories/Arith/EqNat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/EqNat.v')
-rw-r--r--theories/Arith/EqNat.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 94986278..ce8eb478 100644
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(** Equality on natural numbers *)
-Open Local Scope nat_scope.
+Local Open Scope nat_scope.
Implicit Types m n x y : nat.
@@ -23,7 +23,7 @@ Fixpoint eq_nat n m : Prop :=
end.
Theorem eq_nat_refl : forall n, eq_nat n n.
- induction n; simpl in |- *; auto.
+ induction n; simpl; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
@@ -35,7 +35,7 @@ Qed.
Hint Immediate eq_eq_nat: arith v62.
Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m.
- induction n; induction m; simpl in |- *; contradiction || auto with arith.
+ induction n; induction m; simpl; contradiction || auto with arith.
Qed.
Hint Immediate eq_nat_eq: arith v62.
@@ -55,11 +55,11 @@ Proof.
induction n.
destruct m as [| n].
auto with arith.
- intros; right; red in |- *; trivial with arith.
+ intros; right; red; trivial with arith.
destruct m as [| n0].
- right; red in |- *; auto with arith.
+ right; red; auto with arith.
intros.
- simpl in |- *.
+ simpl.
apply IHn.
Defined.
@@ -76,12 +76,12 @@ Fixpoint beq_nat n m : bool :=
Lemma beq_nat_refl : forall n, true = beq_nat n n.
Proof.
- intro x; induction x; simpl in |- *; auto.
+ intro x; induction x; simpl; auto.
Qed.
Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
Proof.
- double induction x y; simpl in |- *.
+ double induction x y; simpl.
reflexivity.
intros n H1 H2. discriminate H2.
intros n H1 H2. discriminate H2.