summaryrefslogtreecommitdiff
path: root/theories/Arith/EqNat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/EqNat.v')
-rw-r--r--theories/Arith/EqNat.v100
1 files changed, 44 insertions, 56 deletions
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 597cd287..2771670e 100644
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -1,16 +1,15 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(** Equality on natural numbers *)
-
+Require Import PeanoNat.
Local Open Scope nat_scope.
-Implicit Types m n x y : nat.
+(** Equality on natural numbers *)
(** * Propositional equality *)
@@ -22,28 +21,33 @@ Fixpoint eq_nat n m : Prop :=
| S n1, S m1 => eq_nat n1 m1
end.
-Theorem eq_nat_refl : forall n, eq_nat n n.
+Theorem eq_nat_refl n : eq_nat n n.
+Proof.
induction n; simpl; auto.
Qed.
Hint Resolve eq_nat_refl: arith v62.
(** [eq] restricted to [nat] and [eq_nat] are equivalent *)
-Lemma eq_eq_nat : forall n m, n = m -> eq_nat n m.
- induction 1; trivial with arith.
+Theorem eq_nat_is_eq n m : eq_nat n m <-> n = m.
+Proof.
+ split.
+ - revert m; induction n; destruct m; simpl; contradiction || auto.
+ - intros <-; apply eq_nat_refl.
Qed.
-Hint Immediate eq_eq_nat: arith v62.
-Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m.
- induction n; induction m; simpl; contradiction || auto with arith.
+Lemma eq_eq_nat n m : n = m -> eq_nat n m.
+Proof.
+ apply eq_nat_is_eq.
Qed.
-Hint Immediate eq_nat_eq: arith v62.
-Theorem eq_nat_is_eq : forall n m, eq_nat n m <-> n = m.
+Lemma eq_nat_eq n m : eq_nat n m -> n = m.
Proof.
- split; auto with arith.
+ apply eq_nat_is_eq.
Qed.
+Hint Immediate eq_eq_nat eq_nat_eq: arith v62.
+
Theorem eq_nat_elim :
forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m.
Proof.
@@ -52,63 +56,47 @@ Qed.
Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}.
Proof.
- induction n.
- destruct m as [| n].
- auto with arith.
- intros; right; red; trivial with arith.
- destruct m as [| n0].
- right; red; auto with arith.
- intros.
- simpl.
- apply IHn.
+ induction n; destruct m; simpl.
+ - left; trivial.
+ - right; intro; trivial.
+ - right; intro; trivial.
+ - apply IHn.
Defined.
-(** * Boolean equality on [nat] *)
+(** * Boolean equality on [nat].
-Fixpoint beq_nat n m : bool :=
- match n, m with
- | O, O => true
- | O, S _ => false
- | S _, O => false
- | S n1, S m1 => beq_nat n1 m1
- end.
+ We reuse the one already defined in module [Nat].
+ In scope [nat_scope], the notation "=?" can be used. *)
-Lemma beq_nat_refl : forall n, true = beq_nat n n.
-Proof.
- intro x; induction x; simpl; auto.
-Qed.
+Notation beq_nat := Nat.eqb (compat "8.4").
-Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y.
-Proof.
- double induction x y; simpl.
- reflexivity.
- intros n H1 H2. discriminate H2.
- intros n H1 H2. discriminate H2.
- intros n H1 z H2 H3. case (H2 _ H3). reflexivity.
-Defined.
+Notation beq_nat_true_iff := Nat.eqb_eq (compat "8.4").
+Notation beq_nat_false_iff := Nat.eqb_neq (compat "8.4").
-Lemma beq_nat_true : forall x y, beq_nat x y = true -> x=y.
+Lemma beq_nat_refl n : true = (n =? n).
Proof.
- induction x; destruct y; simpl; auto; intros; discriminate.
+ symmetry. apply Nat.eqb_refl.
Qed.
-Lemma beq_nat_false : forall x y, beq_nat x y = false -> x<>y.
+Lemma beq_nat_true n m : (n =? m) = true -> n=m.
Proof.
- induction x; destruct y; simpl; auto; intros; discriminate.
+ apply Nat.eqb_eq.
Qed.
-Lemma beq_nat_true_iff : forall x y, beq_nat x y = true <-> x=y.
+Lemma beq_nat_false n m : (n =? m) = false -> n<>m.
Proof.
- split. apply beq_nat_true.
- intros; subst; symmetry; apply beq_nat_refl.
+ apply Nat.eqb_neq.
Qed.
-Lemma beq_nat_false_iff : forall x y, beq_nat x y = false <-> x<>y.
+(** TODO: is it really useful here to have a Defined ?
+ Otherwise we could use Nat.eqb_eq *)
+
+Definition beq_nat_eq : forall n m, true = (n =? m) -> n = m.
Proof.
- intros x y.
- split. apply beq_nat_false.
- generalize (beq_nat_true_iff x y).
- destruct beq_nat; auto.
- intros IFF NEQ. elim NEQ. apply IFF; auto.
-Qed.
+ induction n; destruct m; simpl.
+ - reflexivity.
+ - discriminate.
+ - discriminate.
+ - intros H. case (IHn _ H). reflexivity.
+Defined.