summaryrefslogtreecommitdiff
path: root/theories/Arith/Div2.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Div2.v')
-rw-r--r--theories/Arith/Div2.v167
1 files changed, 69 insertions, 98 deletions
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v
index 45fddd72..1c65a192 100644
--- a/theories/Arith/Div2.v
+++ b/theories/Arith/Div2.v
@@ -1,15 +1,16 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Lt.
-Require Import Plus.
-Require Import Compare_dec.
-Require Import Even.
+(** Nota : this file is OBSOLETE, and left only for compatibility.
+ Please consider using [Nat.div2] directly, and results about it
+ (see file PeanoNat). *)
+
+Require Import PeanoNat Even.
Local Open Scope nat_scope.
@@ -17,12 +18,7 @@ Implicit Type n : nat.
(** Here we define [n/2] and prove some of its properties *)
-Fixpoint div2 n : nat :=
- match n with
- | O => 0
- | S O => 0
- | S (S n') => S (div2 n')
- end.
+Notation div2 := Nat.div2 (compat "8.4").
(** Since [div2] is recursively defined on [0], [1] and [(S (S n))], it is
useful to prove the corresponding induction principle *)
@@ -31,53 +27,48 @@ Lemma ind_0_1_SS :
forall P:nat -> Prop,
P 0 -> P 1 -> (forall n, P n -> P (S (S n))) -> forall n, P n.
Proof.
- intros P H0 H1 Hn.
- cut (forall n, P n /\ P (S n)).
- intros H'n n. elim (H'n n). auto with arith.
-
- induction n. auto with arith.
- intros. elim IHn; auto with arith.
+ intros P H0 H1 H2.
+ fix 1.
+ destruct n as [|[|n]].
+ - exact H0.
+ - exact H1.
+ - apply H2, ind_0_1_SS.
Qed.
(** [0 <n => n/2 < n] *)
-Lemma lt_div2 : forall n, 0 < n -> div2 n < n.
-Proof.
- intro n. pattern n. apply ind_0_1_SS.
- (* n = 0 *)
- inversion 1.
- (* n=1 *)
- simpl; trivial.
- (* n=S S n' *)
- intro n'; case (zerop n').
- intro n'_eq_0. rewrite n'_eq_0. auto with arith.
- auto with arith.
-Qed.
+Lemma lt_div2 n : 0 < n -> div2 n < n.
+Proof. apply Nat.lt_div2. Qed.
Hint Resolve lt_div2: arith.
(** Properties related to the parity *)
-Lemma even_div2 : forall n, even n -> div2 n = div2 (S n)
-with odd_div2 : forall n, odd n -> S (div2 n) = div2 (S n).
+Lemma even_div2 n : even n -> div2 n = div2 (S n).
Proof.
- destruct n; intro H.
- (* 0 *) trivial.
- (* S n *) inversion_clear H. apply odd_div2 in H0 as <-. trivial.
- destruct n; intro.
- (* 0 *) inversion H.
- (* S n *) inversion_clear H. apply even_div2 in H0 as <-. trivial.
+ rewrite Even.even_equiv. intros (p,->).
+ rewrite Nat.div2_succ_double. apply Nat.div2_double.
Qed.
-Lemma div2_even n : div2 n = div2 (S n) -> even n
-with div2_odd n : S (div2 n) = div2 (S n) -> odd n.
+Lemma odd_div2 n : odd n -> S (div2 n) = div2 (S n).
Proof.
-{ destruct n; intro H.
- - constructor.
- - constructor. apply div2_odd. rewrite H. trivial. }
-{ destruct n; intro H.
- - discriminate.
- - constructor. apply div2_even. injection H as <-. trivial. }
+ rewrite Even.odd_equiv. intros (p,->).
+ rewrite Nat.add_1_r, Nat.div2_succ_double.
+ simpl. f_equal. symmetry. apply Nat.div2_double.
+Qed.
+
+Lemma div2_even n : div2 n = div2 (S n) -> even n.
+Proof.
+ destruct (even_or_odd n) as [Ev|Od]; trivial.
+ apply odd_div2 in Od. rewrite <- Od. intro Od'.
+ elim (n_Sn _ Od').
+Qed.
+
+Lemma div2_odd n : S (div2 n) = div2 (S n) -> odd n.
+Proof.
+ destruct (even_or_odd n) as [Ev|Od]; trivial.
+ apply even_div2 in Ev. rewrite <- Ev. intro Ev'.
+ symmetry in Ev'. elim (n_Sn _ Ev').
Qed.
Hint Resolve even_div2 div2_even odd_div2 div2_odd: arith.
@@ -93,58 +84,52 @@ Qed.
(** Properties related to the double ([2n]) *)
-Definition double n := n + n.
+Notation double := Nat.double (compat "8.4").
-Hint Unfold double: arith.
+Hint Unfold double Nat.double: arith.
-Lemma double_S : forall n, double (S n) = S (S (double n)).
+Lemma double_S n : double (S n) = S (S (double n)).
Proof.
- intro. unfold double. simpl. auto with arith.
+ apply Nat.add_succ_r.
Qed.
-Lemma double_plus : forall n (m:nat), double (n + m) = double n + double m.
+Lemma double_plus n m : double (n + m) = double n + double m.
Proof.
- intros m n. unfold double.
- do 2 rewrite plus_assoc_reverse. rewrite (plus_permute n).
- reflexivity.
+ apply Nat.add_shuffle1.
Qed.
Hint Resolve double_S: arith.
-Lemma even_odd_double :
- forall n,
- (even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))).
+Lemma even_odd_double n :
+ (even n <-> n = double (div2 n)) /\ (odd n <-> n = S (double (div2 n))).
Proof.
- intro n. pattern n. apply ind_0_1_SS.
- (* n = 0 *)
- split; split; auto with arith.
- intro H. inversion H.
- (* n = 1 *)
- split; split; auto with arith.
- intro H. inversion H. inversion H1.
- (* n = (S (S n')) *)
- intros. destruct H as ((IH1,IH2),(IH3,IH4)).
- split; split.
- intro H. inversion H. inversion H1.
- simpl. rewrite (double_S (div2 n0)). auto with arith.
- simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
- intro H. inversion H. inversion H1.
- simpl. rewrite (double_S (div2 n0)). auto with arith.
- simpl. rewrite (double_S (div2 n0)). intro H. injection H. auto with arith.
+ revert n. fix 1. destruct n as [|[|n]].
+ - (* n = 0 *)
+ split; split; auto with arith. inversion 1.
+ - (* n = 1 *)
+ split; split; auto with arith. inversion_clear 1. inversion H0.
+ - (* n = (S (S n')) *)
+ destruct (even_odd_double n) as ((Ev,Ev'),(Od,Od')).
+ split; split; simpl div2; rewrite ?double_S.
+ + inversion_clear 1. inversion_clear H0. auto.
+ + injection 1. auto with arith.
+ + inversion_clear 1. inversion_clear H0. auto.
+ + injection 1. auto with arith.
Qed.
+
(** Specializations *)
-Lemma even_double : forall n, even n -> n = double (div2 n).
-Proof fun n => proj1 (proj1 (even_odd_double n)).
+Lemma even_double n : even n -> n = double (div2 n).
+Proof proj1 (proj1 (even_odd_double n)).
-Lemma double_even : forall n, n = double (div2 n) -> even n.
-Proof fun n => proj2 (proj1 (even_odd_double n)).
+Lemma double_even n : n = double (div2 n) -> even n.
+Proof proj2 (proj1 (even_odd_double n)).
-Lemma odd_double : forall n, odd n -> n = S (double (div2 n)).
-Proof fun n => proj1 (proj2 (even_odd_double n)).
+Lemma odd_double n : odd n -> n = S (double (div2 n)).
+Proof proj1 (proj2 (even_odd_double n)).
-Lemma double_odd : forall n, n = S (double (div2 n)) -> odd n.
-Proof fun n => proj2 (proj2 (even_odd_double n)).
+Lemma double_odd n : n = S (double (div2 n)) -> odd n.
+Proof proj2 (proj2 (even_odd_double n)).
Hint Resolve even_double double_even odd_double double_odd: arith.
@@ -166,22 +151,8 @@ Defined.
(** Doubling before dividing by two brings back to the initial number. *)
-Lemma div2_double : forall n:nat, div2 (2*n) = n.
-Proof.
- induction n.
- simpl; auto.
- simpl.
- replace (n+S(n+0)) with (S (2*n)).
- f_equal; auto.
- simpl; auto with arith.
-Qed.
+Lemma div2_double n : div2 (2*n) = n.
+Proof. apply Nat.div2_double. Qed.
-Lemma div2_double_plus_one : forall n:nat, div2 (S (2*n)) = n.
-Proof.
- induction n.
- simpl; auto.
- simpl.
- replace (n+S(n+0)) with (S (2*n)).
- f_equal; auto.
- simpl; auto with arith.
-Qed.
+Lemma div2_double_plus_one n : div2 (S (2*n)) = n.
+Proof. apply Nat.div2_succ_double. Qed.