summaryrefslogtreecommitdiff
path: root/theories/Arith/Compare_dec.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Arith/Compare_dec.v')
-rw-r--r--theories/Arith/Compare_dec.v230
1 files changed, 82 insertions, 148 deletions
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v
index cdad6b35..a97cf6dc 100644
--- a/theories/Arith/Compare_dec.v
+++ b/theories/Arith/Compare_dec.v
@@ -1,15 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Le.
-Require Import Lt.
-Require Import Gt.
-Require Import Decidable.
+Require Import Le Lt Gt Decidable PeanoNat.
Local Open Scope nat_scope.
@@ -29,31 +26,31 @@ Defined.
Definition gt_eq_gt_dec n m : {m > n} + {n = m} + {n > m}.
Proof.
- intros; apply lt_eq_lt_dec; assumption.
+ now apply lt_eq_lt_dec.
Defined.
Definition le_lt_dec n m : {n <= m} + {m < n}.
Proof.
induction n in m |- *.
- auto with arith.
- destruct m.
- auto with arith.
- elim (IHn m); auto with arith.
+ - left; auto with arith.
+ - destruct m.
+ + right; auto with arith.
+ + elim (IHn m); [left|right]; auto with arith.
Defined.
Definition le_le_S_dec n m : {n <= m} + {S m <= n}.
Proof.
- intros; exact (le_lt_dec n m).
+ exact (le_lt_dec n m).
Defined.
Definition le_ge_dec n m : {n <= m} + {n >= m}.
Proof.
- intros; elim (le_lt_dec n m); auto with arith.
+ elim (le_lt_dec n m); auto with arith.
Defined.
Definition le_gt_dec n m : {n <= m} + {n > m}.
Proof.
- intros; exact (le_lt_dec n m).
+ exact (le_lt_dec n m).
Defined.
Definition le_lt_eq_dec n m : n <= m -> {n < m} + {n = m}.
@@ -62,162 +59,121 @@ Proof.
intros; absurd (m < n); auto with arith.
Defined.
-Theorem le_dec : forall n m, {n <= m} + {~ n <= m}.
+Theorem le_dec n m : {n <= m} + {~ n <= m}.
Proof.
- intros n m. destruct (le_gt_dec n m).
- auto with arith.
- right. apply gt_not_le. assumption.
+ destruct (le_gt_dec n m).
+ - now left.
+ - right. now apply gt_not_le.
Defined.
-Theorem lt_dec : forall n m, {n < m} + {~ n < m}.
+Theorem lt_dec n m : {n < m} + {~ n < m}.
Proof.
- intros; apply le_dec.
+ apply le_dec.
Defined.
-Theorem gt_dec : forall n m, {n > m} + {~ n > m}.
+Theorem gt_dec n m : {n > m} + {~ n > m}.
Proof.
- intros; apply lt_dec.
+ apply lt_dec.
Defined.
-Theorem ge_dec : forall n m, {n >= m} + {~ n >= m}.
+Theorem ge_dec n m : {n >= m} + {~ n >= m}.
Proof.
- intros; apply le_dec.
+ apply le_dec.
Defined.
(** Proofs of decidability *)
-Theorem dec_le : forall n m, decidable (n <= m).
+Theorem dec_le n m : decidable (n <= m).
Proof.
- intros n m; destruct (le_dec n m); unfold decidable; auto.
+ apply Nat.le_decidable.
Qed.
-Theorem dec_lt : forall n m, decidable (n < m).
+Theorem dec_lt n m : decidable (n < m).
Proof.
- intros; apply dec_le.
+ apply Nat.lt_decidable.
Qed.
-Theorem dec_gt : forall n m, decidable (n > m).
+Theorem dec_gt n m : decidable (n > m).
Proof.
- intros; apply dec_lt.
+ apply Nat.lt_decidable.
Qed.
-Theorem dec_ge : forall n m, decidable (n >= m).
+Theorem dec_ge n m : decidable (n >= m).
Proof.
- intros; apply dec_le.
+ apply Nat.le_decidable.
Qed.
-Theorem not_eq : forall n m, n <> m -> n < m \/ m < n.
+Theorem not_eq n m : n <> m -> n < m \/ m < n.
Proof.
- intros x y H; elim (lt_eq_lt_dec x y);
- [ intros H1; elim H1;
- [ auto with arith | intros H2; absurd (x = y); assumption ]
- | auto with arith ].
+ apply Nat.lt_gt_cases.
Qed.
-
-Theorem not_le : forall n m, ~ n <= m -> n > m.
+Theorem not_le n m : ~ n <= m -> n > m.
Proof.
- intros x y H; elim (le_gt_dec x y);
- [ intros H1; absurd (x <= y); assumption | trivial with arith ].
+ apply Nat.nle_gt.
Qed.
-Theorem not_gt : forall n m, ~ n > m -> n <= m.
+Theorem not_gt n m : ~ n > m -> n <= m.
Proof.
- intros x y H; elim (le_gt_dec x y);
- [ trivial with arith | intros H1; absurd (x > y); assumption ].
+ apply Nat.nlt_ge.
Qed.
-Theorem not_ge : forall n m, ~ n >= m -> n < m.
+Theorem not_ge n m : ~ n >= m -> n < m.
Proof.
- intros x y H; exact (not_le y x H).
+ apply Nat.nle_gt.
Qed.
-Theorem not_lt : forall n m, ~ n < m -> n >= m.
+Theorem not_lt n m : ~ n < m -> n >= m.
Proof.
- intros x y H; exact (not_gt y x H).
+ apply Nat.nlt_ge.
Qed.
-(** A ternary comparison function in the spirit of [Z.compare]. *)
+(** A ternary comparison function in the spirit of [Z.compare].
+ See now [Nat.compare] and its properties.
+ In scope [nat_scope], the notation for [Nat.compare] is "?=" *)
-Fixpoint nat_compare n m :=
- match n, m with
- | O, O => Eq
- | O, S _ => Lt
- | S _, O => Gt
- | S n', S m' => nat_compare n' m'
- end.
+Notation nat_compare := Nat.compare (compat "8.4").
-Lemma nat_compare_S : forall n m, nat_compare (S n) (S m) = nat_compare n m.
-Proof.
- reflexivity.
-Qed.
+Notation nat_compare_spec := Nat.compare_spec (compat "8.4").
+Notation nat_compare_eq_iff := Nat.compare_eq_iff (compat "8.4").
+Notation nat_compare_S := Nat.compare_succ (compat "8.4").
-Lemma nat_compare_eq_iff : forall n m, nat_compare n m = Eq <-> n = m.
+Lemma nat_compare_lt n m : n<m <-> (n ?= m) = Lt.
Proof.
- induction n; destruct m; simpl; split; auto; try discriminate;
- destruct (IHn m); auto.
+ symmetry. apply Nat.compare_lt_iff.
Qed.
-Lemma nat_compare_eq : forall n m, nat_compare n m = Eq -> n = m.
+Lemma nat_compare_gt n m : n>m <-> (n ?= m) = Gt.
Proof.
- intros; apply -> nat_compare_eq_iff; auto.
+ symmetry. apply Nat.compare_gt_iff.
Qed.
-Lemma nat_compare_lt : forall n m, n<m <-> nat_compare n m = Lt.
+Lemma nat_compare_le n m : n<=m <-> (n ?= m) <> Gt.
Proof.
- induction n; destruct m; simpl; split; auto with arith;
- try solve [inversion 1].
- destruct (IHn m); auto with arith.
- destruct (IHn m); auto with arith.
+ symmetry. apply Nat.compare_le_iff.
Qed.
-Lemma nat_compare_gt : forall n m, n>m <-> nat_compare n m = Gt.
+Lemma nat_compare_ge n m : n>=m <-> (n ?= m) <> Lt.
Proof.
- induction n; destruct m; simpl; split; auto with arith;
- try solve [inversion 1].
- destruct (IHn m); auto with arith.
- destruct (IHn m); auto with arith.
+ symmetry. apply Nat.compare_ge_iff.
Qed.
-Lemma nat_compare_le : forall n m, n<=m <-> nat_compare n m <> Gt.
-Proof.
- split.
- intros LE; contradict LE.
- apply lt_not_le. apply <- nat_compare_gt; auto.
- intros NGT. apply not_lt. contradict NGT.
- apply -> nat_compare_gt; auto.
-Qed.
-
-Lemma nat_compare_ge : forall n m, n>=m <-> nat_compare n m <> Lt.
-Proof.
- split.
- intros GE; contradict GE.
- apply lt_not_le. apply <- nat_compare_lt; auto.
- intros NLT. apply not_lt. contradict NLT.
- apply -> nat_compare_lt; auto.
-Qed.
+(** Some projections of the above equivalences. *)
-Lemma nat_compare_spec :
- forall x y, CompareSpec (x=y) (x<y) (y<x) (nat_compare x y).
+Lemma nat_compare_eq n m : (n ?= m) = Eq -> n = m.
Proof.
- intros.
- destruct (nat_compare x y) eqn:?; constructor.
- apply nat_compare_eq; auto.
- apply <- nat_compare_lt; auto.
- apply <- nat_compare_gt; auto.
+ apply Nat.compare_eq_iff.
Qed.
-(** Some projections of the above equivalences. *)
-
-Lemma nat_compare_Lt_lt : forall n m, nat_compare n m = Lt -> n<m.
+Lemma nat_compare_Lt_lt n m : (n ?= m) = Lt -> n<m.
Proof.
- intros; apply <- nat_compare_lt; auto.
+ apply Nat.compare_lt_iff.
Qed.
-Lemma nat_compare_Gt_gt : forall n m, nat_compare n m = Gt -> n>m.
+Lemma nat_compare_Gt_gt n m : (n ?= m) = Gt -> n>m.
Proof.
- intros; apply <- nat_compare_gt; auto.
+ apply Nat.compare_gt_iff.
Qed.
(** A previous definition of [nat_compare] in terms of [lt_eq_lt_dec].
@@ -230,70 +186,48 @@ Definition nat_compare_alt (n m:nat) :=
| inright _ => Gt
end.
-Lemma nat_compare_equiv: forall n m,
- nat_compare n m = nat_compare_alt n m.
+Lemma nat_compare_equiv n m : (n ?= m) = nat_compare_alt n m.
Proof.
- intros; unfold nat_compare_alt; destruct lt_eq_lt_dec as [[LT|EQ]|GT].
- apply -> nat_compare_lt; auto.
- apply <- nat_compare_eq_iff; auto.
- apply -> nat_compare_gt; auto.
+ unfold nat_compare_alt; destruct lt_eq_lt_dec as [[|]|].
+ - now apply Nat.compare_lt_iff.
+ - now apply Nat.compare_eq_iff.
+ - now apply Nat.compare_gt_iff.
Qed.
+(** A boolean version of [le] over [nat].
+ See now [Nat.leb] and its properties.
+ In scope [nat_scope], the notation for [Nat.leb] is "<=?" *)
-(** A boolean version of [le] over [nat]. *)
-
-Fixpoint leb (m:nat) : nat -> bool :=
- match m with
- | O => fun _:nat => true
- | S m' =>
- fun n:nat => match n with
- | O => false
- | S n' => leb m' n'
- end
- end.
+Notation leb := Nat.leb (compat "8.4").
-Lemma leb_correct : forall m n, m <= n -> leb m n = true.
-Proof.
- induction m as [| m IHm]. trivial.
- destruct n. intro H. elim (le_Sn_O _ H).
- intros. simpl. apply IHm. apply le_S_n. assumption.
-Qed.
+Notation leb_iff := Nat.leb_le (compat "8.4").
-Lemma leb_complete : forall m n, leb m n = true -> m <= n.
+Lemma leb_iff_conv m n : (n <=? m) = false <-> m < n.
Proof.
- induction m. trivial with arith.
- destruct n. intro H. discriminate H.
- auto with arith.
+ rewrite Nat.leb_nle. apply Nat.nle_gt.
Qed.
-Lemma leb_iff : forall m n, leb m n = true <-> m <= n.
+Lemma leb_correct m n : m <= n -> (m <=? n) = true.
Proof.
- split; auto using leb_correct, leb_complete.
+ apply Nat.leb_le.
Qed.
-Lemma leb_correct_conv : forall m n, m < n -> leb n m = false.
+Lemma leb_complete m n : (m <=? n) = true -> m <= n.
Proof.
- intros.
- generalize (leb_complete n m).
- destruct (leb n m); auto.
- intros; elim (lt_not_le m n); auto.
+ apply Nat.leb_le.
Qed.
-Lemma leb_complete_conv : forall m n, leb n m = false -> m < n.
+Lemma leb_correct_conv m n : m < n -> (n <=? m) = false.
Proof.
- intros m n EQ. apply not_le.
- intro LE. apply leb_correct in LE. rewrite LE in EQ; discriminate.
+ apply leb_iff_conv.
Qed.
-Lemma leb_iff_conv : forall m n, leb n m = false <-> m < n.
+Lemma leb_complete_conv m n : (n <=? m) = false -> m < n.
Proof.
- split; auto using leb_complete_conv, leb_correct_conv.
+ apply leb_iff_conv.
Qed.
-Lemma leb_compare : forall n m, leb n m = true <-> nat_compare n m <> Gt.
+Lemma leb_compare n m : (n <=? m) = true <-> (n ?= m) <> Gt.
Proof.
- split; intros.
- apply -> nat_compare_le. auto using leb_complete.
- apply leb_correct. apply <- nat_compare_le; auto.
+ rewrite Nat.compare_le_iff. apply Nat.leb_le.
Qed.
-