summaryrefslogtreecommitdiff
path: root/test-suite/success/decl_mode.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/decl_mode.v')
-rw-r--r--test-suite/success/decl_mode.v40
1 files changed, 20 insertions, 20 deletions
diff --git a/test-suite/success/decl_mode.v b/test-suite/success/decl_mode.v
index fede31a8..bc1757fd 100644
--- a/test-suite/success/decl_mode.v
+++ b/test-suite/success/decl_mode.v
@@ -8,10 +8,10 @@ proof.
assume n:nat.
per induction on n.
suppose it is 0.
- suffices (0=0) to show thesis.
+ suffices (0=0) to show thesis.
thus thesis.
suppose it is (S m) and Hrec:thesis for m.
- have (div2 (double (S m))= div2 (S (S (double m)))).
+ have (div2 (double (S m))= div2 (S (S (double m)))).
~= (S (div2 (double m))).
thus ~= (S m) by Hrec.
end induction.
@@ -56,12 +56,12 @@ proof.
end proof.
Qed.
-Lemma main_thm_aux: forall n,even n ->
+Lemma main_thm_aux: forall n,even n ->
double (double (div2 n *div2 n))=n*n.
proof.
given n such that H:(even n).
- *** have (double (double (div2 n * div2 n))
- = double (div2 n) * double (div2 n))
+ *** have (double (double (div2 n * div2 n))
+ = double (div2 n) * double (div2 n))
by double_mult_l,double_mult_r.
thus ~= (n*n) by H,even_double.
end proof.
@@ -75,14 +75,14 @@ proof.
per induction on m.
suppose it is 0.
thus thesis.
- suppose it is (S mm) and thesis for mm.
+ suppose it is (S mm) and thesis for mm.
then H:(even (S (S (mm+mm)))).
have (S (S (mm + mm)) = S mm + S mm) using omega.
hence (even (S mm +S mm)) by H.
end induction.
end proof.
Qed.
-
+
Theorem main_theorem: forall n p, n*n=double (p*p) -> p=0.
proof.
assume n0:nat.
@@ -95,7 +95,7 @@ proof.
suppose it is (S p').
assume (n * n = double (S p' * S p')).
=~ 0 by H1,mult_n_O.
- ~= (S ( p' + p' * S p' + S p'* S p'))
+ ~= (S ( p' + p' * S p' + S p'* S p'))
by plus_n_Sm.
hence thesis .
suppose it is 0.
@@ -106,19 +106,19 @@ proof.
have (even (double (p*p))) by even_double_n .
then (even (n*n)) by H0.
then H2:(even n) by even_is_even_times_even.
- then (double (double (div2 n *div2 n))=n*n)
+ then (double (double (div2 n *div2 n))=n*n)
by main_thm_aux.
~= (double (p*p)) by H0.
- then H':(double (div2 n *div2 n)= p*p) by double_inv.
+ then H':(double (div2 n *div2 n)= p*p) by double_inv.
have (even (double (div2 n *div2 n))) by even_double_n.
then (even (p*p)) by even_double_n,H'.
then H3:(even p) by even_is_even_times_even.
- have (double(double (div2 n * div2 n)) = n*n)
+ have (double(double (div2 n * div2 n)) = n*n)
by H2,main_thm_aux.
~= (double (p*p)) by H0.
- ~= (double(double (double (div2 p * div2 p))))
+ ~= (double(double (double (div2 p * div2 p))))
by H3,main_thm_aux.
- then H'':(div2 n * div2 n = double (div2 p * div2 p))
+ then H'':(div2 n * div2 n = double (div2 p * div2 p))
by double_inv.
then (div2 n < n) by lt_div2,neq_O_lt,H1.
then H4:(div2 p=0) by (H (div2 n)),H''.
@@ -137,8 +137,8 @@ Coercion IZR: Z >->R.*)
Open Scope R_scope.
-Lemma square_abs_square:
- forall p,(INR (Zabs_nat p) * INR (Zabs_nat p)) = (IZR p * IZR p).
+Lemma square_abs_square:
+ forall p,(INR (Zabs_nat p) * INR (Zabs_nat p)) = (IZR p * IZR p).
proof.
assume p:Z.
per cases on p.
@@ -147,7 +147,7 @@ proof.
suppose it is (Zpos z).
thus thesis.
suppose it is (Zneg z).
- have ((INR (Zabs_nat (Zneg z)) * INR (Zabs_nat (Zneg z))) =
+ have ((INR (Zabs_nat (Zneg z)) * INR (Zabs_nat (Zneg z))) =
(IZR (Zpos z) * IZR (Zpos z))).
~= ((- IZR (Zpos z)) * (- IZR (Zpos z))).
thus ~= (IZR (Zneg z) * IZR (Zneg z)).
@@ -160,19 +160,19 @@ Definition irrational (x:R):Prop :=
Theorem irrationnal_sqrt_2: irrational (sqrt (INR 2%nat)).
proof.
- let p:Z,q:nat be such that H:(q<>0%nat)
+ let p:Z,q:nat be such that H:(q<>0%nat)
and H0:(sqrt (INR 2%nat)=(IZR p/INR q)).
have H_in_R:(INR q<>0:>R) by H.
have triv:((IZR p/INR q* INR q) =IZR p :>R) by * using field.
have sqrt2:((sqrt (INR 2%nat) * sqrt (INR 2%nat))= INR 2%nat:>R) by sqrt_def.
- have (INR (Zabs_nat p * Zabs_nat p)
- = (INR (Zabs_nat p) * INR (Zabs_nat p)))
+ have (INR (Zabs_nat p * Zabs_nat p)
+ = (INR (Zabs_nat p) * INR (Zabs_nat p)))
by mult_INR.
~= (IZR p* IZR p) by square_abs_square.
~= ((IZR p/INR q*INR q)*(IZR p/INR q*INR q)) by triv. (* we have to factor because field is too weak *)
~= ((IZR p/INR q)*(IZR p/INR q)*(INR q*INR q)) using ring.
~= (sqrt (INR 2%nat) * sqrt (INR 2%nat)*(INR q*INR q)) by H0.
- ~= (INR (2%nat * (q*q))) by sqrt2,mult_INR.
+ ~= (INR (2%nat * (q*q))) by sqrt2,mult_INR.
then (Zabs_nat p * Zabs_nat p = 2* (q * q))%nat.
~= ((q*q)+(q*q))%nat.
~= (Div2.double (q*q)).