summaryrefslogtreecommitdiff
path: root/test-suite/success/Reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/Reg.v')
-rw-r--r--test-suite/success/Reg.v178
1 files changed, 93 insertions, 85 deletions
diff --git a/test-suite/success/Reg.v b/test-suite/success/Reg.v
index eaa0690c..89b3032c 100644
--- a/test-suite/success/Reg.v
+++ b/test-suite/success/Reg.v
@@ -1,136 +1,144 @@
-Require Reals.
+Require Import Reals.
-Axiom y : R->R.
-Axiom d_y : (derivable y).
-Axiom n_y : (x:R)``(y x)<>0``.
-Axiom dy_0 : (derive_pt y R0 (d_y R0)) == R1.
+Axiom y : R -> R.
+Axiom d_y : derivable y.
+Axiom n_y : forall x : R, y x <> 0%R.
+Axiom dy_0 : derive_pt y 0 (d_y 0%R) = 1%R.
-Lemma essai0 : (continuity_pt [x:R]``(x+2)/(y x)+x/(y x)`` R0).
-Assert H := d_y.
-Assert H0 := n_y.
-Reg.
+Lemma essai0 : continuity_pt (fun x : R => ((x + 2) / y x + x / y x)%R) 0.
+assert (H := d_y).
+assert (H0 := n_y).
+reg.
Qed.
-Lemma essai1 : (derivable_pt [x:R]``/2*(sin x)`` ``1``).
-Reg.
+Lemma essai1 : derivable_pt (fun x : R => (/ 2 * sin x)%R) 1.
+reg.
Qed.
-Lemma essai2 : (continuity [x:R]``(Rsqr x)*(cos (x*x))+x``).
-Reg.
+Lemma essai2 : continuity (fun x : R => (Rsqr x * cos (x * x) + x)%R).
+reg.
Qed.
-Lemma essai3 : (derivable_pt [x:R]``x*((Rsqr x)+3)`` R0).
-Reg.
+Lemma essai3 : derivable_pt (fun x : R => (x * (Rsqr x + 3))%R) 0.
+reg.
Qed.
-Lemma essai4 : (derivable [x:R]``(x+x)*(sin x)``).
-Reg.
+Lemma essai4 : derivable (fun x : R => ((x + x) * sin x)%R).
+reg.
Qed.
-Lemma essai5 : (derivable [x:R]``1+(sin (2*x+3))*(cos (cos x))``).
-Reg.
+Lemma essai5 : derivable (fun x : R => (1 + sin (2 * x + 3) * cos (cos x))%R).
+reg.
Qed.
-Lemma essai6 : (derivable [x:R]``(cos (x+3))``).
-Reg.
+Lemma essai6 : derivable (fun x : R => cos (x + 3)).
+reg.
Qed.
-Lemma essai7 : (derivable_pt [x:R]``(cos (/(sqrt x)))*(Rsqr ((sin x)+1))`` R1).
-Reg.
-Apply Rlt_R0_R1.
-Red; Intro; Rewrite sqrt_1 in H; Assert H0 := R1_neq_R0; Elim H0; Assumption.
+Lemma essai7 :
+ derivable_pt (fun x : R => (cos (/ sqrt x) * Rsqr (sin x + 1))%R) 1.
+reg.
+apply Rlt_0_1.
+red in |- *; intro; rewrite sqrt_1 in H; assert (H0 := R1_neq_R0); elim H0;
+ assumption.
Qed.
-Lemma essai8 : (derivable_pt [x:R]``(sqrt ((Rsqr x)+(sin x)+1))`` R0).
-Reg.
-Rewrite sin_0.
-Rewrite Rsqr_O.
-Replace ``0+0+1`` with ``1``; [Apply Rlt_R0_R1 | Ring].
+Lemma essai8 : derivable_pt (fun x : R => sqrt (Rsqr x + sin x + 1)) 0.
+reg.
+ rewrite sin_0.
+ rewrite Rsqr_0.
+ replace (0 + 0 + 1)%R with 1%R; [ apply Rlt_0_1 | ring ].
Qed.
-Lemma essai9 : (derivable_pt (plus_fct id sin) R1).
-Reg.
+Lemma essai9 : derivable_pt (id + sin) 1.
+reg.
Qed.
-Lemma essai10 : (derivable_pt [x:R]``x+2`` R0).
-Reg.
+Lemma essai10 : derivable_pt (fun x : R => (x + 2)%R) 0.
+reg.
Qed.
-Lemma essai11 : (derive_pt [x:R]``x+2`` R0 essai10)==R1.
-Reg.
+Lemma essai11 : derive_pt (fun x : R => (x + 2)%R) 0 essai10 = 1%R.
+reg.
Qed.
-Lemma essai12 : (derivable [x:R]``x+(Rsqr (x+2))``).
-Reg.
+Lemma essai12 : derivable (fun x : R => (x + Rsqr (x + 2))%R).
+reg.
Qed.
-Lemma essai13 : (derive_pt [x:R]``x+(Rsqr (x+2))`` R0 (essai12 R0)) == ``5``.
-Reg.
+Lemma essai13 :
+ derive_pt (fun x : R => (x + Rsqr (x + 2))%R) 0 (essai12 0%R) = 5%R.
+reg.
Qed.
-Lemma essai14 : (derivable_pt [x:R]``2*x+x`` ``2``).
-Reg.
+Lemma essai14 : derivable_pt (fun x : R => (2 * x + x)%R) 2.
+reg.
Qed.
-Lemma essai15 : (derive_pt [x:R]``2*x+x`` ``2`` essai14) == ``3``.
-Reg.
+Lemma essai15 : derive_pt (fun x : R => (2 * x + x)%R) 2 essai14 = 3%R.
+reg.
Qed.
-Lemma essai16 : (derivable_pt [x:R]``x+(sin x)`` R0).
-Reg.
+Lemma essai16 : derivable_pt (fun x : R => (x + sin x)%R) 0.
+reg.
Qed.
-Lemma essai17 : (derive_pt [x:R]``x+(sin x)`` R0 essai16)==``2``.
-Reg.
-Rewrite cos_0.
-Reflexivity.
+Lemma essai17 : derive_pt (fun x : R => (x + sin x)%R) 0 essai16 = 2%R.
+reg.
+ rewrite cos_0.
+reflexivity.
Qed.
-Lemma essai18 : (derivable_pt [x:R]``x+(y x)`` ``0``).
-Assert H := d_y.
-Reg.
+Lemma essai18 : derivable_pt (fun x : R => (x + y x)%R) 0.
+assert (H := d_y).
+reg.
Qed.
-Lemma essai19 : (derive_pt [x:R]``x+(y x)`` ``0`` essai18) == ``2``.
-Assert H := dy_0.
-Assert H0 := d_y.
-Reg.
+Lemma essai19 : derive_pt (fun x : R => (x + y x)%R) 0 essai18 = 2%R.
+assert (H := dy_0).
+assert (H0 := d_y).
+reg.
Qed.
-Axiom z:R->R.
-Axiom d_z: (derivable z).
+Axiom z : R -> R.
+Axiom d_z : derivable z.
-Lemma essai20 : (derivable_pt [x:R]``(z (y x))`` R0).
-Reg.
-Apply d_y.
-Apply d_z.
+Lemma essai20 : derivable_pt (fun x : R => z (y x)) 0.
+reg.
+apply d_y.
+apply d_z.
Qed.
-Lemma essai21 : (derive_pt [x:R]``(z (y x))`` R0 essai20) == R1.
-Assert H := dy_0.
-Reg.
+Lemma essai21 : derive_pt (fun x : R => z (y x)) 0 essai20 = 1%R.
+assert (H := dy_0).
+reg.
Abort.
-Lemma essai22 : (derivable [x:R]``(sin (z x))+(Rsqr (z x))/(y x)``).
-Assert H := d_y.
-Reg.
-Apply n_y.
-Apply d_z.
+Lemma essai22 : derivable (fun x : R => (sin (z x) + Rsqr (z x) / y x)%R).
+assert (H := d_y).
+reg.
+apply n_y.
+apply d_z.
Qed.
(* Pour tester la continuite de sqrt en 0 *)
-Lemma essai23 : (continuity_pt [x:R]``(sin (sqrt (x-1)))+(exp (Rsqr ((sqrt x)+3)))`` R1).
-Reg.
-Left; Apply Rlt_R0_R1.
-Right; Unfold Rminus; Rewrite Rplus_Ropp_r; Reflexivity.
-Qed.
-
-Lemma essai24 : (derivable [x:R]``(sqrt (x*x+2*x+2))+(Rabsolu (x*x+1))``).
-Reg.
-Replace ``x*x+2*x+2`` with ``(Rsqr (x+1))+1``.
-Apply ge0_plus_gt0_is_gt0; [Apply pos_Rsqr | Apply Rlt_R0_R1].
-Unfold Rsqr; Ring.
-Red; Intro; Cut ``0<x*x+1``.
-Intro; Rewrite H in H0; Elim (Rlt_antirefl ? H0).
-Apply ge0_plus_gt0_is_gt0; [Replace ``x*x`` with (Rsqr x); [Apply pos_Rsqr | Reflexivity] | Apply Rlt_R0_R1].
+Lemma essai23 :
+ continuity_pt
+ (fun x : R => (sin (sqrt (x - 1)) + exp (Rsqr (sqrt x + 3)))%R) 1.
+reg.
+left; apply Rlt_0_1.
+right; unfold Rminus in |- *; rewrite Rplus_opp_r; reflexivity.
+Qed.
+
+Lemma essai24 :
+ derivable (fun x : R => (sqrt (x * x + 2 * x + 2) + Rabs (x * x + 1))%R).
+reg.
+ replace (x * x + 2 * x + 2)%R with (Rsqr (x + 1) + 1)%R.
+apply Rplus_le_lt_0_compat; [ apply Rle_0_sqr | apply Rlt_0_1 ].
+unfold Rsqr in |- *; ring.
+red in |- *; intro; cut (0 < x * x + 1)%R.
+intro; rewrite H in H0; elim (Rlt_irrefl _ H0).
+apply Rplus_le_lt_0_compat;
+ [ replace (x * x)%R with (Rsqr x); [ apply Rle_0_sqr | reflexivity ]
+ | apply Rlt_0_1 ].
Qed.