summaryrefslogtreecommitdiff
path: root/test-suite/success/FunindExtraction_compat86.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/FunindExtraction_compat86.v')
-rw-r--r--test-suite/success/FunindExtraction_compat86.v506
1 files changed, 506 insertions, 0 deletions
diff --git a/test-suite/success/FunindExtraction_compat86.v b/test-suite/success/FunindExtraction_compat86.v
new file mode 100644
index 00000000..8912197d
--- /dev/null
+++ b/test-suite/success/FunindExtraction_compat86.v
@@ -0,0 +1,506 @@
+(* -*- coq-prog-args: ("-compat" "8.6") -*- *)
+
+Definition iszero (n : nat) : bool :=
+ match n with
+ | O => true
+ | _ => false
+ end.
+
+Functional Scheme iszero_ind := Induction for iszero Sort Prop.
+
+Lemma toto : forall n : nat, n = 0 -> iszero n = true.
+intros x eg.
+ functional induction iszero x; simpl.
+trivial.
+inversion eg.
+Qed.
+
+
+Function ftest (n m : nat) : nat :=
+ match n with
+ | O => match m with
+ | O => 0
+ | _ => 1
+ end
+ | S p => 0
+ end.
+(* MS: FIXME: apparently can't define R_ftest_complete. Rest of the file goes through. *)
+
+Lemma test1 : forall n m : nat, ftest n m <= 2.
+intros n m.
+ functional induction ftest n m; auto.
+Qed.
+
+Lemma test2 : forall m n, ~ 2 = ftest n m.
+Proof.
+intros n m;intro H.
+functional inversion H ftest.
+Qed.
+
+Lemma test3 : forall n m, ftest n m = 0 -> (n = 0 /\ m = 0) \/ n <> 0.
+Proof.
+functional inversion 1 ftest;auto.
+Qed.
+
+
+Require Import Arith.
+Lemma test11 : forall m : nat, ftest 0 m <= 2.
+intros m.
+ functional induction ftest 0 m.
+auto.
+auto.
+auto with *.
+Qed.
+
+Function lamfix (m n : nat) {struct n } : nat :=
+ match n with
+ | O => m
+ | S p => lamfix m p
+ end.
+
+(* Parameter v1 v2 : nat. *)
+
+Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1.
+intros v1 v2.
+ functional induction lamfix v1 v2.
+trivial.
+assumption.
+Defined.
+
+
+
+(* polymorphic function *)
+Require Import List.
+
+Functional Scheme app_ind := Induction for app Sort Prop.
+
+Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'.
+intros A l l'.
+ functional induction app A l l'; intuition.
+ rewrite <- H0; trivial.
+Qed.
+
+
+
+
+
+Require Export Arith.
+
+
+Function trivfun (n : nat) : nat :=
+ match n with
+ | O => 0
+ | S m => trivfun m
+ end.
+
+
+(* essaie de parametre variables non locaux:*)
+
+Parameter varessai : nat.
+
+Lemma first_try : trivfun varessai = 0.
+ functional induction trivfun varessai.
+trivial.
+assumption.
+Defined.
+
+
+ Functional Scheme triv_ind := Induction for trivfun Sort Prop.
+
+Lemma bisrepetita : forall n' : nat, trivfun n' = 0.
+intros n'.
+ functional induction trivfun n'.
+trivial.
+assumption.
+Qed.
+
+
+
+
+
+
+
+Function iseven (n : nat) : bool :=
+ match n with
+ | O => true
+ | S (S m) => iseven m
+ | _ => false
+ end.
+
+
+Function funex (n : nat) : nat :=
+ match iseven n with
+ | true => n
+ | false => match n with
+ | O => 0
+ | S r => funex r
+ end
+ end.
+
+
+Function nat_equal_bool (n m : nat) {struct n} : bool :=
+ match n with
+ | O => match m with
+ | O => true
+ | _ => false
+ end
+ | S p => match m with
+ | O => false
+ | S q => nat_equal_bool p q
+ end
+ end.
+
+
+Require Export Div2.
+Require Import Nat.
+Functional Scheme div2_ind := Induction for div2 Sort Prop.
+Lemma div2_inf : forall n : nat, div2 n <= n.
+intros n.
+ functional induction div2 n.
+auto.
+auto.
+
+apply le_S.
+apply le_n_S.
+exact IHn0.
+Qed.
+
+(* reuse this lemma as a scheme:*)
+
+Function nested_lam (n : nat) : nat -> nat :=
+ match n with
+ | O => fun m : nat => 0
+ | S n' => fun m : nat => m + nested_lam n' m
+ end.
+
+
+Lemma nest : forall n m : nat, nested_lam n m = n * m.
+intros n m.
+ functional induction nested_lam n m; simpl;auto.
+Qed.
+
+
+Function essai (x : nat) (p : nat * nat) {struct x} : nat :=
+ let (n, m) := (p: nat*nat) in
+ match n with
+ | O => 0
+ | S q => match x with
+ | O => 1
+ | S r => S (essai r (q, m))
+ end
+ end.
+
+Lemma essai_essai :
+ forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p.
+intros x p.
+ functional induction essai x p; intros.
+inversion H.
+auto with arith.
+ auto with arith.
+Qed.
+
+Function plus_x_not_five'' (n m : nat) {struct n} : nat :=
+ let x := nat_equal_bool m 5 in
+ let y := 0 in
+ match n with
+ | O => y
+ | S q =>
+ let recapp := plus_x_not_five'' q m in
+ match x with
+ | true => S recapp
+ | false => S recapp
+ end
+ end.
+
+Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x.
+intros a b.
+ functional induction plus_x_not_five'' a b; intros hyp; simpl; auto.
+Qed.
+
+Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true.
+intros n m.
+ functional induction nat_equal_bool n m; simpl; intros hyp; auto.
+rewrite <- hyp in y; simpl in y;tauto.
+inversion hyp.
+Qed.
+
+Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m.
+intros n m.
+ functional induction nat_equal_bool n m; simpl; intros eg; auto.
+inversion eg.
+inversion eg.
+Qed.
+
+
+Inductive istrue : bool -> Prop :=
+ istrue0 : istrue true.
+
+Functional Scheme add_ind := Induction for add Sort Prop.
+
+Lemma inf_x_plusxy' : forall x y : nat, x <= x + y.
+intros n m.
+ functional induction add n m; intros.
+auto with arith.
+auto with arith.
+Qed.
+
+
+Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0.
+intros n.
+unfold plus.
+ functional induction plus n 0; intros.
+auto with arith.
+apply le_n_S.
+assumption.
+Qed.
+
+Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x.
+intros n.
+ functional induction plus 0 n; intros; auto with arith.
+Qed.
+
+Function mod2 (n : nat) : nat :=
+ match n with
+ | O => 0
+ | S (S m) => S (mod2 m)
+ | _ => 0
+ end.
+
+Lemma princ_mod2 : forall n : nat, mod2 n <= n.
+intros n.
+ functional induction mod2 n; simpl; auto with arith.
+Qed.
+
+Function isfour (n : nat) : bool :=
+ match n with
+ | S (S (S (S O))) => true
+ | _ => false
+ end.
+
+Function isononeorfour (n : nat) : bool :=
+ match n with
+ | S O => true
+ | S (S (S (S O))) => true
+ | _ => false
+ end.
+
+Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n).
+intros n.
+ functional induction isononeorfour n; intros istr; simpl;
+ inversion istr.
+apply istrue0.
+destruct n. inversion istr.
+destruct n. tauto.
+destruct n. inversion istr.
+destruct n. inversion istr.
+destruct n. tauto.
+simpl in *. inversion H0.
+Qed.
+
+Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n).
+intros n.
+ functional induction isononeorfour n; intros m istr; inversion istr.
+apply istrue0.
+rewrite H in y; simpl in y;tauto.
+Qed.
+
+Function ftest4 (n m : nat) : nat :=
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 1
+ end
+ | S p => match m with
+ | O => 0
+ | S r => 1
+ end
+ end.
+
+Lemma test4 : forall n m : nat, ftest n m <= 2.
+intros n m.
+ functional induction ftest n m; auto with arith.
+Qed.
+
+Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2.
+intros n m.
+assert ({n0 | n0 = S n}).
+exists (S n);reflexivity.
+destruct H as [n0 H1].
+rewrite <- H1;revert H1.
+ functional induction ftest4 n0 m.
+inversion 1.
+inversion 1.
+
+auto with arith.
+auto with arith.
+Qed.
+
+Function ftest44 (x : nat * nat) (n m : nat) : nat :=
+ let (p, q) := (x: nat*nat) in
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 1
+ end
+ | S p => match m with
+ | O => 0
+ | S r => 1
+ end
+ end.
+
+Lemma test44 :
+ forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2.
+intros pq n m o r s.
+ functional induction ftest44 pq n (S m).
+auto with arith.
+auto with arith.
+auto with arith.
+auto with arith.
+Qed.
+
+Function ftest2 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => match m with
+ | O => 0
+ | S q => 0
+ end
+ | S p => ftest2 p m
+ end.
+
+Lemma test2' : forall n m : nat, ftest2 n m <= 2.
+intros n m.
+ functional induction ftest2 n m; simpl; intros; auto.
+Qed.
+
+Function ftest3 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match m with
+ | O => ftest3 p 0
+ | S r => 0
+ end
+ end.
+
+Lemma test3' : forall n m : nat, ftest3 n m <= 2.
+intros n m.
+ functional induction ftest3 n m.
+intros.
+auto.
+intros.
+auto.
+intros.
+simpl.
+auto.
+Qed.
+
+Function ftest5 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match m with
+ | O => ftest5 p 0
+ | S r => ftest5 p r
+ end
+ end.
+
+Lemma test5 : forall n m : nat, ftest5 n m <= 2.
+intros n m.
+ functional induction ftest5 n m.
+intros.
+auto.
+intros.
+auto.
+intros.
+simpl.
+auto.
+Qed.
+
+Function ftest7 (n : nat) : nat :=
+ match ftest5 n 0 with
+ | O => 0
+ | S r => 0
+ end.
+
+Lemma essai7 :
+ forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2)
+ (Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2)
+ (n : nat), ftest7 n <= 2.
+intros hyp1 hyp2 n.
+ functional induction ftest7 n; auto.
+Qed.
+
+Function ftest6 (n m : nat) {struct n} : nat :=
+ match n with
+ | O => 0
+ | S p => match ftest5 p 0 with
+ | O => ftest6 p 0
+ | S r => ftest6 p r
+ end
+ end.
+
+
+Lemma princ6 :
+ (forall n m : nat, n = 0 -> ftest6 0 m <= 2) ->
+ (forall n m p : nat,
+ ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) ->
+ (forall n m p r : nat,
+ ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) ->
+ forall x y : nat, ftest6 x y <= 2.
+intros hyp1 hyp2 hyp3 n m.
+generalize hyp1 hyp2 hyp3.
+clear hyp1 hyp2 hyp3.
+ functional induction ftest6 n m; auto.
+Qed.
+
+Lemma essai6 : forall n m : nat, ftest6 n m <= 2.
+intros n m.
+ functional induction ftest6 n m; simpl; auto.
+Qed.
+
+(* Some tests with modules *)
+Module M.
+Function test_m (n:nat) : nat :=
+ match n with
+ | 0 => 0
+ | S n => S (S (test_m n))
+ end.
+
+Lemma test_m_is_double : forall n, div2 (test_m n) = n.
+Proof.
+intros n.
+functional induction (test_m n).
+reflexivity.
+simpl;rewrite IHn0;reflexivity.
+Qed.
+End M.
+(* We redefine a new Function with the same name *)
+Function test_m (n:nat) : nat :=
+ pred n.
+
+Lemma test_m_is_pred : forall n, test_m n = pred n.
+Proof.
+intro n.
+functional induction (test_m n). (* the test_m_ind to use is the last defined saying that test_m = pred*)
+reflexivity.
+Qed.
+
+(* Checks if the dot notation are correctly treated in infos *)
+Lemma M_test_m_is_double : forall n, div2 (M.test_m n) = n.
+intro n.
+(* here we should apply M.test_m_ind *)
+functional induction (M.test_m n).
+reflexivity.
+simpl;rewrite IHn0;reflexivity.
+Qed.
+
+Import M.
+(* Now test_m is the one which defines double *)
+
+Lemma test_m_is_double : forall n, div2 (M.test_m n) = n.
+intro n.
+(* here we should apply M.test_m_ind *)
+functional induction (test_m n).
+reflexivity.
+simpl;rewrite IHn0;reflexivity.
+Qed.
+
+Extraction iszero.