summaryrefslogtreecommitdiff
path: root/test-suite/success/FunindExtraction_compat86.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/success/FunindExtraction_compat86.v')
-rw-r--r--test-suite/success/FunindExtraction_compat86.v506
1 files changed, 0 insertions, 506 deletions
diff --git a/test-suite/success/FunindExtraction_compat86.v b/test-suite/success/FunindExtraction_compat86.v
deleted file mode 100644
index 8912197d..00000000
--- a/test-suite/success/FunindExtraction_compat86.v
+++ /dev/null
@@ -1,506 +0,0 @@
-(* -*- coq-prog-args: ("-compat" "8.6") -*- *)
-
-Definition iszero (n : nat) : bool :=
- match n with
- | O => true
- | _ => false
- end.
-
-Functional Scheme iszero_ind := Induction for iszero Sort Prop.
-
-Lemma toto : forall n : nat, n = 0 -> iszero n = true.
-intros x eg.
- functional induction iszero x; simpl.
-trivial.
-inversion eg.
-Qed.
-
-
-Function ftest (n m : nat) : nat :=
- match n with
- | O => match m with
- | O => 0
- | _ => 1
- end
- | S p => 0
- end.
-(* MS: FIXME: apparently can't define R_ftest_complete. Rest of the file goes through. *)
-
-Lemma test1 : forall n m : nat, ftest n m <= 2.
-intros n m.
- functional induction ftest n m; auto.
-Qed.
-
-Lemma test2 : forall m n, ~ 2 = ftest n m.
-Proof.
-intros n m;intro H.
-functional inversion H ftest.
-Qed.
-
-Lemma test3 : forall n m, ftest n m = 0 -> (n = 0 /\ m = 0) \/ n <> 0.
-Proof.
-functional inversion 1 ftest;auto.
-Qed.
-
-
-Require Import Arith.
-Lemma test11 : forall m : nat, ftest 0 m <= 2.
-intros m.
- functional induction ftest 0 m.
-auto.
-auto.
-auto with *.
-Qed.
-
-Function lamfix (m n : nat) {struct n } : nat :=
- match n with
- | O => m
- | S p => lamfix m p
- end.
-
-(* Parameter v1 v2 : nat. *)
-
-Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1.
-intros v1 v2.
- functional induction lamfix v1 v2.
-trivial.
-assumption.
-Defined.
-
-
-
-(* polymorphic function *)
-Require Import List.
-
-Functional Scheme app_ind := Induction for app Sort Prop.
-
-Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'.
-intros A l l'.
- functional induction app A l l'; intuition.
- rewrite <- H0; trivial.
-Qed.
-
-
-
-
-
-Require Export Arith.
-
-
-Function trivfun (n : nat) : nat :=
- match n with
- | O => 0
- | S m => trivfun m
- end.
-
-
-(* essaie de parametre variables non locaux:*)
-
-Parameter varessai : nat.
-
-Lemma first_try : trivfun varessai = 0.
- functional induction trivfun varessai.
-trivial.
-assumption.
-Defined.
-
-
- Functional Scheme triv_ind := Induction for trivfun Sort Prop.
-
-Lemma bisrepetita : forall n' : nat, trivfun n' = 0.
-intros n'.
- functional induction trivfun n'.
-trivial.
-assumption.
-Qed.
-
-
-
-
-
-
-
-Function iseven (n : nat) : bool :=
- match n with
- | O => true
- | S (S m) => iseven m
- | _ => false
- end.
-
-
-Function funex (n : nat) : nat :=
- match iseven n with
- | true => n
- | false => match n with
- | O => 0
- | S r => funex r
- end
- end.
-
-
-Function nat_equal_bool (n m : nat) {struct n} : bool :=
- match n with
- | O => match m with
- | O => true
- | _ => false
- end
- | S p => match m with
- | O => false
- | S q => nat_equal_bool p q
- end
- end.
-
-
-Require Export Div2.
-Require Import Nat.
-Functional Scheme div2_ind := Induction for div2 Sort Prop.
-Lemma div2_inf : forall n : nat, div2 n <= n.
-intros n.
- functional induction div2 n.
-auto.
-auto.
-
-apply le_S.
-apply le_n_S.
-exact IHn0.
-Qed.
-
-(* reuse this lemma as a scheme:*)
-
-Function nested_lam (n : nat) : nat -> nat :=
- match n with
- | O => fun m : nat => 0
- | S n' => fun m : nat => m + nested_lam n' m
- end.
-
-
-Lemma nest : forall n m : nat, nested_lam n m = n * m.
-intros n m.
- functional induction nested_lam n m; simpl;auto.
-Qed.
-
-
-Function essai (x : nat) (p : nat * nat) {struct x} : nat :=
- let (n, m) := (p: nat*nat) in
- match n with
- | O => 0
- | S q => match x with
- | O => 1
- | S r => S (essai r (q, m))
- end
- end.
-
-Lemma essai_essai :
- forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p.
-intros x p.
- functional induction essai x p; intros.
-inversion H.
-auto with arith.
- auto with arith.
-Qed.
-
-Function plus_x_not_five'' (n m : nat) {struct n} : nat :=
- let x := nat_equal_bool m 5 in
- let y := 0 in
- match n with
- | O => y
- | S q =>
- let recapp := plus_x_not_five'' q m in
- match x with
- | true => S recapp
- | false => S recapp
- end
- end.
-
-Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x.
-intros a b.
- functional induction plus_x_not_five'' a b; intros hyp; simpl; auto.
-Qed.
-
-Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true.
-intros n m.
- functional induction nat_equal_bool n m; simpl; intros hyp; auto.
-rewrite <- hyp in y; simpl in y;tauto.
-inversion hyp.
-Qed.
-
-Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m.
-intros n m.
- functional induction nat_equal_bool n m; simpl; intros eg; auto.
-inversion eg.
-inversion eg.
-Qed.
-
-
-Inductive istrue : bool -> Prop :=
- istrue0 : istrue true.
-
-Functional Scheme add_ind := Induction for add Sort Prop.
-
-Lemma inf_x_plusxy' : forall x y : nat, x <= x + y.
-intros n m.
- functional induction add n m; intros.
-auto with arith.
-auto with arith.
-Qed.
-
-
-Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0.
-intros n.
-unfold plus.
- functional induction plus n 0; intros.
-auto with arith.
-apply le_n_S.
-assumption.
-Qed.
-
-Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x.
-intros n.
- functional induction plus 0 n; intros; auto with arith.
-Qed.
-
-Function mod2 (n : nat) : nat :=
- match n with
- | O => 0
- | S (S m) => S (mod2 m)
- | _ => 0
- end.
-
-Lemma princ_mod2 : forall n : nat, mod2 n <= n.
-intros n.
- functional induction mod2 n; simpl; auto with arith.
-Qed.
-
-Function isfour (n : nat) : bool :=
- match n with
- | S (S (S (S O))) => true
- | _ => false
- end.
-
-Function isononeorfour (n : nat) : bool :=
- match n with
- | S O => true
- | S (S (S (S O))) => true
- | _ => false
- end.
-
-Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n).
-intros n.
- functional induction isononeorfour n; intros istr; simpl;
- inversion istr.
-apply istrue0.
-destruct n. inversion istr.
-destruct n. tauto.
-destruct n. inversion istr.
-destruct n. inversion istr.
-destruct n. tauto.
-simpl in *. inversion H0.
-Qed.
-
-Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n).
-intros n.
- functional induction isononeorfour n; intros m istr; inversion istr.
-apply istrue0.
-rewrite H in y; simpl in y;tauto.
-Qed.
-
-Function ftest4 (n m : nat) : nat :=
- match n with
- | O => match m with
- | O => 0
- | S q => 1
- end
- | S p => match m with
- | O => 0
- | S r => 1
- end
- end.
-
-Lemma test4 : forall n m : nat, ftest n m <= 2.
-intros n m.
- functional induction ftest n m; auto with arith.
-Qed.
-
-Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2.
-intros n m.
-assert ({n0 | n0 = S n}).
-exists (S n);reflexivity.
-destruct H as [n0 H1].
-rewrite <- H1;revert H1.
- functional induction ftest4 n0 m.
-inversion 1.
-inversion 1.
-
-auto with arith.
-auto with arith.
-Qed.
-
-Function ftest44 (x : nat * nat) (n m : nat) : nat :=
- let (p, q) := (x: nat*nat) in
- match n with
- | O => match m with
- | O => 0
- | S q => 1
- end
- | S p => match m with
- | O => 0
- | S r => 1
- end
- end.
-
-Lemma test44 :
- forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2.
-intros pq n m o r s.
- functional induction ftest44 pq n (S m).
-auto with arith.
-auto with arith.
-auto with arith.
-auto with arith.
-Qed.
-
-Function ftest2 (n m : nat) {struct n} : nat :=
- match n with
- | O => match m with
- | O => 0
- | S q => 0
- end
- | S p => ftest2 p m
- end.
-
-Lemma test2' : forall n m : nat, ftest2 n m <= 2.
-intros n m.
- functional induction ftest2 n m; simpl; intros; auto.
-Qed.
-
-Function ftest3 (n m : nat) {struct n} : nat :=
- match n with
- | O => 0
- | S p => match m with
- | O => ftest3 p 0
- | S r => 0
- end
- end.
-
-Lemma test3' : forall n m : nat, ftest3 n m <= 2.
-intros n m.
- functional induction ftest3 n m.
-intros.
-auto.
-intros.
-auto.
-intros.
-simpl.
-auto.
-Qed.
-
-Function ftest5 (n m : nat) {struct n} : nat :=
- match n with
- | O => 0
- | S p => match m with
- | O => ftest5 p 0
- | S r => ftest5 p r
- end
- end.
-
-Lemma test5 : forall n m : nat, ftest5 n m <= 2.
-intros n m.
- functional induction ftest5 n m.
-intros.
-auto.
-intros.
-auto.
-intros.
-simpl.
-auto.
-Qed.
-
-Function ftest7 (n : nat) : nat :=
- match ftest5 n 0 with
- | O => 0
- | S r => 0
- end.
-
-Lemma essai7 :
- forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2)
- (Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2)
- (n : nat), ftest7 n <= 2.
-intros hyp1 hyp2 n.
- functional induction ftest7 n; auto.
-Qed.
-
-Function ftest6 (n m : nat) {struct n} : nat :=
- match n with
- | O => 0
- | S p => match ftest5 p 0 with
- | O => ftest6 p 0
- | S r => ftest6 p r
- end
- end.
-
-
-Lemma princ6 :
- (forall n m : nat, n = 0 -> ftest6 0 m <= 2) ->
- (forall n m p : nat,
- ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) ->
- (forall n m p r : nat,
- ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) ->
- forall x y : nat, ftest6 x y <= 2.
-intros hyp1 hyp2 hyp3 n m.
-generalize hyp1 hyp2 hyp3.
-clear hyp1 hyp2 hyp3.
- functional induction ftest6 n m; auto.
-Qed.
-
-Lemma essai6 : forall n m : nat, ftest6 n m <= 2.
-intros n m.
- functional induction ftest6 n m; simpl; auto.
-Qed.
-
-(* Some tests with modules *)
-Module M.
-Function test_m (n:nat) : nat :=
- match n with
- | 0 => 0
- | S n => S (S (test_m n))
- end.
-
-Lemma test_m_is_double : forall n, div2 (test_m n) = n.
-Proof.
-intros n.
-functional induction (test_m n).
-reflexivity.
-simpl;rewrite IHn0;reflexivity.
-Qed.
-End M.
-(* We redefine a new Function with the same name *)
-Function test_m (n:nat) : nat :=
- pred n.
-
-Lemma test_m_is_pred : forall n, test_m n = pred n.
-Proof.
-intro n.
-functional induction (test_m n). (* the test_m_ind to use is the last defined saying that test_m = pred*)
-reflexivity.
-Qed.
-
-(* Checks if the dot notation are correctly treated in infos *)
-Lemma M_test_m_is_double : forall n, div2 (M.test_m n) = n.
-intro n.
-(* here we should apply M.test_m_ind *)
-functional induction (M.test_m n).
-reflexivity.
-simpl;rewrite IHn0;reflexivity.
-Qed.
-
-Import M.
-(* Now test_m is the one which defines double *)
-
-Lemma test_m_is_double : forall n, div2 (M.test_m n) = n.
-intro n.
-(* here we should apply M.test_m_ind *)
-functional induction (test_m n).
-reflexivity.
-simpl;rewrite IHn0;reflexivity.
-Qed.
-
-Extraction iszero.