summaryrefslogtreecommitdiff
path: root/test-suite/micromega
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/micromega')
-rw-r--r--test-suite/micromega/example.v10
-rw-r--r--test-suite/micromega/square.v18
2 files changed, 14 insertions, 14 deletions
diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v
index f424f0fc..d648c2e4 100644
--- a/test-suite/micromega/example.v
+++ b/test-suite/micromega/example.v
@@ -77,13 +77,13 @@ Definition rbound2 (C:Z -> Z -> Z) : Prop :=
Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\
rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D ->
- Zabs (C p t - D q t) <= Zabs (C p s - D q s) + 2 * rho * (t- s).
+ Z.abs (C p t - D q t) <= Z.abs (C p s - D q s) + 2 * rho * (t- s).
Proof.
intros.
- generalize (Zabs_eq (C p t - D q t)).
- generalize (Zabs_non_eq (C p t - D q t)).
- generalize (Zabs_eq (C p s -D q s)).
- generalize (Zabs_non_eq (C p s - D q s)).
+ generalize (Z.abs_eq (C p t - D q t)).
+ generalize (Z.abs_neq (C p t - D q t)).
+ generalize (Z.abs_eq (C p s -D q s)).
+ generalize (Z.abs_neq (C p s - D q s)).
unfold rbound2 in H.
unfold rbound1 in H.
intuition.
diff --git a/test-suite/micromega/square.v b/test-suite/micromega/square.v
index 4c00ffe4..8767f687 100644
--- a/test-suite/micromega/square.v
+++ b/test-suite/micromega/square.v
@@ -9,17 +9,17 @@
Require Import ZArith Zwf Psatz QArith.
Open Scope Z_scope.
-Lemma Zabs_square : forall x, (Zabs x)^2 = x^2.
+Lemma Zabs_square : forall x, (Z.abs x)^2 = x^2.
Proof.
intros ; case (Zabs_dec x) ; intros ; psatz Z 2.
Qed.
-Hint Resolve Zabs_pos Zabs_square.
+Hint Resolve Z.abs_nonneg Zabs_square.
Lemma integer_statement : ~exists n, exists p, n^2 = 2*p^2 /\ n <> 0.
Proof.
-intros [n [p [Heq Hnz]]]; pose (n' := Zabs n); pose (p':=Zabs p).
-assert (facts : 0 <= Zabs n /\ 0 <= Zabs p /\ Zabs n^2=n^2
- /\ Zabs p^2 = p^2) by auto.
+intros [n [p [Heq Hnz]]]; pose (n' := Z.abs n); pose (p':=Z.abs p).
+assert (facts : 0 <= Z.abs n /\ 0 <= Z.abs p /\ Z.abs n^2=n^2
+ /\ Z.abs p^2 = p^2) by auto.
assert (H : (0 < n' /\ 0 <= p' /\ n' ^2 = 2* p' ^2)) by
(destruct facts as [Hf1 [Hf2 [Hf3 Hf4]]]; unfold n', p' ; psatz Z 2).
generalize p' H; elim n' using (well_founded_ind (Zwf_well_founded 0)); clear.
@@ -35,7 +35,7 @@ Lemma QnumZpower : forall x : Q, Qnum (x ^ 2)%Q = ((Qnum x) ^ 2) %Z.
Proof.
intros.
destruct x.
- cbv beta iota zeta delta - [Zmult].
+ cbv beta iota zeta delta - [Z.mul].
ring.
Qed.
@@ -45,15 +45,15 @@ Proof.
intros.
destruct x.
simpl.
- unfold Zpower_pos.
+ unfold Z.pow_pos.
simpl.
- rewrite Pmult_1_r.
+ rewrite Pos.mul_1_r.
reflexivity.
Qed.
Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1.
Proof.
- unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Zmult_1_r.
+ unfold Qeq; intros [x]; simpl (Qden (2#1)); rewrite Z.mul_1_r.
intros HQeq.
assert (Heq : (Qnum x ^ 2 = 2 * ' Qden x ^ 2%Q)%Z) by
(rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto).