summaryrefslogtreecommitdiff
path: root/test-suite/micromega/example.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/micromega/example.v')
-rw-r--r--test-suite/micromega/example.v347
1 files changed, 347 insertions, 0 deletions
diff --git a/test-suite/micromega/example.v b/test-suite/micromega/example.v
new file mode 100644
index 00000000..dc78ace5
--- /dev/null
+++ b/test-suite/micromega/example.v
@@ -0,0 +1,347 @@
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* *)
+(************************************************************************)
+
+Require Import ZArith.
+Require Import Micromegatac.
+Require Import Ring_normalize.
+Open Scope Z_scope.
+Require Import ZMicromega.
+Require Import VarMap.
+
+(* false in Q : x=1/2 and n=1 *)
+
+Lemma not_so_easy : forall x n : Z,
+ 2*x + 1 <= 2 *n -> x <= n-1.
+Proof.
+ intros.
+ zfarkas.
+Qed.
+
+
+(* From Laurent Théry *)
+
+Lemma some_pol : forall x, 4 * x ^ 2 + 3 * x + 2 >= 0.
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+
+Lemma Zdiscr: forall a b c x,
+ a * x ^ 2 + b * x + c = 0 -> b ^ 2 - 4 * a * c >= 0.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+
+Lemma plus_minus : forall x y,
+ 0 = x + y -> 0 = x -y -> 0 = x /\ 0 = y.
+Proof.
+ intros.
+ zfarkas.
+Qed.
+
+
+
+Lemma mplus_minus : forall x y,
+ x + y >= 0 -> x -y >= 0 -> x^2 - y^2 >= 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma pol3: forall x y, 0 <= x + y ->
+ x^3 + 3*x^2*y + 3*x* y^2 + y^3 >= 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+
+(* Motivating example from: Expressiveness + Automation + Soundness:
+ Towards COmbining SMT Solvers and Interactive Proof Assistants *)
+Parameter rho : Z.
+Parameter rho_ge : rho >= 0.
+Parameter correct : Z -> Z -> Prop.
+
+
+Definition rbound1 (C:Z -> Z -> Z) : Prop :=
+ forall p s t, correct p t /\ s <= t -> C p t - C p s <= (1-rho)*(t-s).
+
+Definition rbound2 (C:Z -> Z -> Z) : Prop :=
+ forall p s t, correct p t /\ s <= t -> (1-rho)*(t-s) <= C p t - C p s.
+
+
+Lemma bounded_drift : forall s t p q C D, s <= t /\ correct p t /\ correct q t /\
+ rbound1 C /\ rbound2 C /\ rbound1 D /\ rbound2 D ->
+ Zabs (C p t - D q t) <= Zabs (C p s - D q s) + 2 * rho * (t- s).
+Proof.
+ intros.
+ generalize (Zabs_eq (C p t - D q t)).
+ generalize (Zabs_non_eq (C p t - D q t)).
+ generalize (Zabs_eq (C p s -D q s)).
+ generalize (Zabs_non_eq (C p s - D q s)).
+ unfold rbound2 in H.
+ unfold rbound1 in H.
+ intuition.
+ generalize (H6 _ _ _ (conj H H4)).
+ generalize (H7 _ _ _ (conj H H4)).
+ generalize (H8 _ _ _ (conj H H4)).
+ generalize (H10 _ _ _ (conj H H4)).
+ generalize (H6 _ _ _ (conj H5 H4)).
+ generalize (H7 _ _ _ (conj H5 H4)).
+ generalize (H8 _ _ _ (conj H5 H4)).
+ generalize (H10 _ _ _ (conj H5 H4)).
+ generalize rho_ge.
+ micromega Z.
+Qed.
+
+(* Rule of signs *)
+
+Lemma sign_pos_pos: forall x y,
+ x > 0 -> y > 0 -> x*y > 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_pos_zero: forall x y,
+ x > 0 -> y = 0 -> x*y = 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_pos_neg: forall x y,
+ x > 0 -> y < 0 -> x*y < 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_zer_pos: forall x y,
+ x = 0 -> y > 0 -> x*y = 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_zero_zero: forall x y,
+ x = 0 -> y = 0 -> x*y = 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_zero_neg: forall x y,
+ x = 0 -> y < 0 -> x*y = 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_neg_pos: forall x y,
+ x < 0 -> y > 0 -> x*y < 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_neg_zero: forall x y,
+ x < 0 -> y = 0 -> x*y = 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+Lemma sign_neg_neg: forall x y,
+ x < 0 -> y < 0 -> x*y > 0.
+Proof.
+ intros; micromega Z.
+Qed.
+
+
+(* Other (simple) examples *)
+
+Lemma binomial : forall x y, (x+y)^2 = x^2 + 2*x*y + y^2.
+Proof.
+ intros.
+ zfarkas.
+Qed.
+
+Lemma product : forall x y, x >= 0 -> y >= 0 -> x * y >= 0.
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+
+Lemma product_strict : forall x y, x > 0 -> y > 0 -> x * y > 0.
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+
+Lemma pow_2_pos : forall x, x ^ 2 + 1 = 0 -> False.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+(* Found in Parrilo's talk *)
+(* BUG?: certificate with **very** big coefficients *)
+Lemma parrilo_ex : forall x y, x - y^2 + 3 >= 0 -> y + x^2 + 2 = 0 -> False.
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+
+(* from hol_light/Examples/sos.ml *)
+
+Lemma hol_light1 : forall a1 a2 b1 b2,
+ a1 >= 0 -> a2 >= 0 ->
+ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) ->
+ (a1 * b1 + a2 * b2 = 0) -> a1 * a2 - b1 * b2 >= 0.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+
+Lemma hol_light2 : forall x a,
+ 3 * x + 7 * a < 4 -> 3 < 2 * x -> a < 0.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+Lemma hol_light3 : forall b a c x,
+ b ^ 2 < 4 * a * c -> (a * x ^2 + b * x + c = 0) -> False.
+Proof.
+intros ; micromega Z.
+Qed.
+
+Lemma hol_light4 : forall a c b x,
+ a * x ^ 2 + b * x + c = 0 -> b ^ 2 >= 4 * a * c.
+Proof.
+intros ; micromega Z.
+Qed.
+
+Lemma hol_light5 : forall x y,
+ 0 <= x /\ x <= 1 /\ 0 <= y /\ y <= 1
+ -> x ^ 2 + y ^ 2 < 1 \/
+ (x - 1) ^ 2 + y ^ 2 < 1 \/
+ x ^ 2 + (y - 1) ^ 2 < 1 \/
+ (x - 1) ^ 2 + (y - 1) ^ 2 < 1.
+Proof.
+intros; micromega Z.
+Qed.
+
+
+
+Lemma hol_light7 : forall x y z,
+ 0<= x /\ 0 <= y /\ 0 <= z /\ x + y + z <= 3
+ -> x * y + x * z + y * z >= 3 * x * y * z.
+Proof.
+intros ; micromega Z.
+Qed.
+
+Lemma hol_light8 : forall x y z,
+ x ^ 2 + y ^ 2 + z ^ 2 = 1 -> (x + y + z) ^ 2 <= 3.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+Lemma hol_light9 : forall w x y z,
+ w ^ 2 + x ^ 2 + y ^ 2 + z ^ 2 = 1
+ -> (w + x + y + z) ^ 2 <= 4.
+Proof.
+ intros;micromega Z.
+Qed.
+
+Lemma hol_light10 : forall x y,
+ x >= 1 /\ y >= 1 -> x * y >= x + y - 1.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+Lemma hol_light11 : forall x y,
+ x > 1 /\ y > 1 -> x * y > x + y - 1.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+
+Lemma hol_light12: forall x y z,
+ 2 <= x /\ x <= 125841 / 50000 /\
+ 2 <= y /\ y <= 125841 / 50000 /\
+ 2 <= z /\ z <= 125841 / 50000
+ -> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= 0.
+Proof.
+ intros x y z ; set (e:= (125841 / 50000)).
+ compute in e.
+ unfold e ; intros ; micromega Z.
+Qed.
+
+Lemma hol_light14 : forall x y z,
+ 2 <= x /\ x <= 4 /\ 2 <= y /\ y <= 4 /\ 2 <= z /\ z <= 4
+ -> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z).
+Proof.
+ intros ;micromega Z.
+Qed.
+
+(* ------------------------------------------------------------------------- *)
+(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *)
+(* ------------------------------------------------------------------------- *)
+
+Lemma hol_light16 : forall x y,
+ 0 <= x /\ 0 <= y /\ (x * y = 1)
+ -> x + y <= x ^ 2 + y ^ 2.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+Lemma hol_light17 : forall x y,
+ 0 <= x /\ 0 <= y /\ (x * y = 1)
+ -> x * y * (x + y) <= x ^ 2 + y ^ 2.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+Lemma hol_light18 : forall x y,
+ 0 <= x /\ 0 <= y -> x * y * (x + y) ^ 2 <= (x ^ 2 + y ^ 2) ^ 2.
+Proof.
+ intros ; micromega Z.
+Qed.
+
+(* ------------------------------------------------------------------------- *)
+(* Some examples over integers and natural numbers. *)
+(* ------------------------------------------------------------------------- *)
+
+Lemma hol_light19 : forall m n, 2 * m + n = (n + m) + m.
+Proof.
+ intros ; zfarkas.
+Qed.
+
+Lemma hol_light22 : forall n, n >= 0 -> n <= n * n.
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+
+Lemma hol_light24 : forall x1 y1 x2 y2, x1 >= 0 -> x2 >= 0 -> y1 >= 0 -> y2 >= 0 ->
+ ((x1 + y1) ^2 + x1 + 1 = (x2 + y2) ^ 2 + x2 + 1)
+ -> (x1 + y1 = x2 + y2).
+Proof.
+ intros.
+ micromega Z.
+Qed.
+
+Lemma motzkin' : forall x y, (x^2+y^2+1)*(x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0.
+Proof.
+ intros ; sos Z.
+Qed.
+
+
+
+Lemma motzkin : forall x y, (x^2*y^4 + x^4*y^2 + 1 - 3*x^2*y^2) >= 0.
+Proof.
+ intros.
+ generalize (motzkin' x y).
+ micromega Z.
+Qed.