summaryrefslogtreecommitdiff
path: root/test-suite/failure/sortelim.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/failure/sortelim.v')
-rw-r--r--test-suite/failure/sortelim.v149
1 files changed, 149 insertions, 0 deletions
diff --git a/test-suite/failure/sortelim.v b/test-suite/failure/sortelim.v
new file mode 100644
index 00000000..2b3cf106
--- /dev/null
+++ b/test-suite/failure/sortelim.v
@@ -0,0 +1,149 @@
+(* This is a proof of false which used to be accepted by Coq (Jan 12, 2014) due
+to a DeBruijn index error in the check for allowed elimination sorts.
+
+Proof by Maxime Dénès, using a proof of Hurkens' paradox by Hugo Herbelin to derive
+inconsistency. *)
+
+(* We start by adapting the proof of Hurkens' paradox by Hugo in
+theories/Logic/Hurkens.v, so that instead of requiring a retract
+from Type into Prop up to equality, we require it only up to
+equivalence.
+*)
+
+Section Hurkens.
+
+Definition Type2 := Type.
+Definition Type1 := Type : Type2.
+
+(** Assumption of a retract from Type into Prop *)
+
+Variable down : Type1 -> Prop.
+Variable up : Prop -> Type1.
+
+Hypothesis back : forall A, up (down A) -> A.
+
+Hypothesis forth : forall A, A -> up (down A).
+
+Hypothesis backforth : forall (A:Type) (P:A->Type) (a:A),
+ P (back A (forth A a)) -> P a.
+
+Hypothesis backforth_r : forall (A:Type) (P:A->Type) (a:A),
+ P a -> P (back A (forth A a)).
+
+(** Proof *)
+
+Definition V : Type1 := forall A:Prop, ((up A -> Prop) -> up A -> Prop) -> up A -> Prop.
+Definition U : Type1 := V -> Prop.
+
+Definition sb (z:V) : V := fun A r a => r (z A r) a.
+Definition le (i:U -> Prop) (x:U) : Prop := x (fun A r a => i (fun v => sb v A r a)).
+Definition le' (i:up (down U) -> Prop) (x:up (down U)) : Prop := le (fun a:U => i (forth _ a)) (back _ x).
+Definition induct (i:U -> Prop) : Type1 := forall x:U, up (le i x) -> up (i x).
+Definition WF : U := fun z => down (induct (fun a => z (down U) le' (forth _ a))).
+Definition I (x:U) : Prop :=
+ (forall i:U -> Prop, up (le i x) -> up (i (fun v => sb v (down U) le' (forth _ x)))) -> False.
+
+Lemma Omega : forall i:U -> Prop, induct i -> up (i WF).
+Proof.
+intros i y.
+apply y.
+unfold le, WF, induct.
+apply forth.
+intros x H0.
+apply y.
+unfold sb, le', le.
+compute.
+apply backforth_r.
+exact H0.
+Qed.
+
+Lemma lemma1 : induct (fun u => down (I u)).
+Proof.
+unfold induct.
+intros x p.
+apply forth.
+intro q.
+generalize (q (fun u => down (I u)) p).
+intro r.
+apply back in r.
+apply r.
+intros i j.
+unfold le, sb, le', le in j |-.
+apply backforth in j.
+specialize q with (i := fun y => i (fun v:V => sb v (down U) le' (forth _ y))).
+apply q.
+exact j.
+Qed.
+
+Lemma lemma2 : (forall i:U -> Prop, induct i -> up (i WF)) -> False.
+Proof.
+intro x.
+generalize (x (fun u => down (I u)) lemma1).
+intro r; apply back in r.
+apply r.
+intros i H0.
+apply (x (fun y => i (fun v => sb v (down U) le' (forth _ y)))).
+unfold le, WF in H0.
+apply back in H0.
+exact H0.
+Qed.
+
+Theorem paradox : False.
+Proof.
+exact (lemma2 Omega).
+Qed.
+
+End Hurkens.
+
+(* Alright, now we use a DeBruijn index off-by-1 error to build a type
+satisfying the hypotheses of the paradox. What is tricky is that the pretyper is
+not affected by the bug (only the kernel is). Even worse, since our goal is to
+bypass the elimination restriction for types in Prop, we have to devise a way to
+feed the kernel with an illegal pattern matching without going through the
+pattern matching compiler (which calls the pretyper). The trick is to use the
+record machinery, which defines projections, checking if the kernel accepts
+it. *)
+
+Definition informative (x : bool) :=
+ match x with
+ | true => Type
+ | false => Prop
+ end.
+
+Definition depsort (T : Type) (x : bool) : informative x :=
+ match x with
+ | true => T
+ | false => True
+ end.
+
+(* The let-bound parameters in the record below trigger the error *)
+
+Record Box (ff := false) (tt := true) (T : Type) : Prop :=
+ wrap {prop : depsort T tt}.
+
+Definition down (x : Type) : Prop := Box x.
+Definition up (x : Prop) : Type := x.
+
+Fail Definition back A : up (down A) -> A := prop A.
+
+(* If the projection has been defined, the following script derives a proof of
+false.
+
+Definition forth A : A -> up (down A) := wrap A.
+
+Definition backforth (A:Type) (P:A->Type) (a:A) :
+ P (back A (forth A a)) -> P a := fun H => H.
+
+Definition backforth_r (A:Type) (P:A->Type) (a:A) :
+ P a -> P (back A (forth A a)) := fun H => H.
+
+(* Everything set up, we just check that we built the right context for the
+paradox to apply. *)
+
+Theorem pandora : False.
+apply (paradox down up back forth backforth backforth_r).
+Qed.
+
+Print Assumptions pandora.
+
+*) \ No newline at end of file