summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/shouldsucceed/1918.v
diff options
context:
space:
mode:
Diffstat (limited to 'test-suite/bugs/closed/shouldsucceed/1918.v')
-rw-r--r--test-suite/bugs/closed/shouldsucceed/1918.v377
1 files changed, 377 insertions, 0 deletions
diff --git a/test-suite/bugs/closed/shouldsucceed/1918.v b/test-suite/bugs/closed/shouldsucceed/1918.v
new file mode 100644
index 00000000..9d4a3e04
--- /dev/null
+++ b/test-suite/bugs/closed/shouldsucceed/1918.v
@@ -0,0 +1,377 @@
+(** Occur-check for Meta (up to delta) *)
+
+(** LNMItPredShort.v Version 2.0 July 2008 *)
+(** does not need impredicative Set, runs under V8.2, tested with SVN 11296 *)
+
+(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse*)
+
+
+Set Implicit Arguments.
+
+(** the universe of all monotypes *)
+Definition k0 := Set.
+
+(** the type of all type transformations *)
+Definition k1 := k0 -> k0.
+
+(** the type of all rank-2 type transformations *)
+Definition k2 := k1 -> k1.
+
+(** polymorphic identity *)
+Definition id : forall (A:Set), A -> A := fun A x => x.
+
+(** composition *)
+Definition comp (A B C:Set)(g:B->C)(f:A->B) : A->C := fun x => g (f x).
+
+Infix "o" := comp (at level 90).
+
+Definition sub_k1 (X Y:k1) : Type :=
+ forall A:Set, X A -> Y A.
+
+Infix "c_k1" := sub_k1 (at level 60).
+
+(** monotonicity *)
+Definition mon (X:k1) : Type := forall (A B:Set), (A -> B) -> X A -> X B.
+
+(** extensionality *)
+Definition ext (X:k1)(h: mon X): Prop :=
+ forall (A B:Set)(f g:A -> B),
+ (forall a, f a = g a) -> forall r, h _ _ f r = h _ _ g r.
+
+(** first functor law *)
+Definition fct1 (X:k1)(m: mon X) : Prop :=
+ forall (A:Set)(x:X A), m _ _ (id(A:=A)) x = x.
+
+(** second functor law *)
+Definition fct2 (X:k1)(m: mon X) : Prop :=
+ forall (A B C:Set)(f:A -> B)(g:B -> C)(x:X A),
+ m _ _ (g o f) x = m _ _ g (m _ _ f x).
+
+(** pack up the good properties of the approximation into
+ the notion of an extensional functor *)
+Record EFct (X:k1) : Type := mkEFct
+ { m : mon X;
+ e : ext m;
+ f1 : fct1 m;
+ f2 : fct2 m }.
+
+(** preservation of extensional functors *)
+Definition pEFct (F:k2) : Type :=
+ forall (X:k1), EFct X -> EFct (F X).
+
+
+(** we show some closure properties of pEFct, depending on such properties
+ for EFct *)
+
+Definition moncomp (X Y:k1)(mX:mon X)(mY:mon Y): mon (fun A => X(Y A)).
+Proof.
+ red.
+ intros X Y mX mY A B f x.
+ exact (mX (Y A)(Y B) (mY A B f) x).
+Defined.
+
+(** closure under composition *)
+Lemma compEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X(Y A)).
+Proof.
+ intros X Y ef1 ef2.
+ apply (mkEFct(m:=moncomp (m ef1) (m ef2))); red; intros; unfold moncomp.
+(* prove ext *)
+ apply (e ef1).
+ intro.
+ apply (e ef2); trivial.
+(* prove fct1 *)
+ rewrite (e ef1 (m ef2 (id (A:=A))) (id(A:=Y A))).
+ apply (f1 ef1).
+ intro.
+ apply (f1 ef2).
+(* prove fct2 *)
+ rewrite (e ef1 (m ef2 (g o f))((m ef2 g)o(m ef2 f))).
+ apply (f2 ef1).
+ intro.
+ unfold comp at 2.
+ apply (f2 ef2).
+Defined.
+
+Corollary comppEFct (F G:k2): pEFct F -> pEFct G ->
+ pEFct (fun X A => F X (G X A)).
+Proof.
+ red.
+ intros.
+ apply compEFct; auto.
+Defined.
+
+(** closure under sums *)
+Lemma sumEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A + Y A)%type.
+Proof.
+ intros X Y ef1 ef2.
+ set (m12:=fun (A B:Set)(f:A->B) x => match x with
+ | inl y => inl _ (m ef1 f y)
+ | inr y => inr _ (m ef2 f y)
+ end).
+ apply (mkEFct(m:=m12)); red; intros.
+(* prove ext *)
+ destruct r.
+ simpl.
+ apply (f_equal (fun x=>inl (A:=X B) (Y B) x)).
+ apply (e ef1); trivial.
+ simpl.
+ apply (f_equal (fun x=>inr (X B) (B:=Y B) x)).
+ apply (e ef2); trivial.
+(* prove fct1 *)
+ destruct x.
+ simpl.
+ apply (f_equal (fun x=>inl (A:=X A) (Y A) x)).
+ apply (f1 ef1).
+ simpl.
+ apply (f_equal (fun x=>inr (X A) (B:=Y A) x)).
+ apply (f1 ef2).
+(* prove fct2 *)
+ destruct x.
+ simpl.
+ rewrite (f2 ef1); reflexivity.
+ simpl.
+ rewrite (f2 ef2); reflexivity.
+Defined.
+
+Corollary sumpEFct (F G:k2): pEFct F -> pEFct G ->
+ pEFct (fun X A => F X A + G X A)%type.
+Proof.
+ red.
+ intros.
+ apply sumEFct; auto.
+Defined.
+
+(** closure under products *)
+Lemma prodEFct (X Y:k1): EFct X -> EFct Y -> EFct (fun A => X A * Y A)%type.
+Proof.
+ intros X Y ef1 ef2.
+ set (m12:=fun (A B:Set)(f:A->B) x => match x with
+ (x1,x2) => (m ef1 f x1, m ef2 f x2) end).
+ apply (mkEFct(m:=m12)); red; intros.
+(* prove ext *)
+ destruct r as [x1 x2].
+ simpl.
+ apply injective_projections; simpl.
+ apply (e ef1); trivial.
+ apply (e ef2); trivial.
+(* prove fct1 *)
+ destruct x as [x1 x2].
+ simpl.
+ apply injective_projections; simpl.
+ apply (f1 ef1).
+ apply (f1 ef2).
+(* prove fct2 *)
+ destruct x as [x1 x2].
+ simpl.
+ apply injective_projections; simpl.
+ apply (f2 ef1).
+ apply (f2 ef2).
+Defined.
+
+Corollary prodpEFct (F G:k2): pEFct F -> pEFct G ->
+ pEFct (fun X A => F X A * G X A)%type.
+Proof.
+ red.
+ intros.
+ apply prodEFct; auto.
+Defined.
+
+(** the identity in k2 preserves extensional functors *)
+Lemma idpEFct: pEFct (fun X => X).
+Proof.
+ red.
+ intros.
+ assumption.
+Defined.
+
+(** a variant for the eta-expanded identity *)
+Lemma idpEFct_eta: pEFct (fun X A => X A).
+Proof.
+ red.
+ intros X ef.
+ destruct ef as [m0 e0 f01 f02].
+ change (mon X) with (mon (fun A => X A)) in m0.
+ apply (mkEFct (m:=m0) e0 f01 f02).
+Defined.
+
+(** the identity in k1 "is" an extensional functor *)
+Lemma idEFct: EFct (fun A => A).
+Proof.
+ set (mId:=fun A B (f:A->B)(x:A) => f x).
+ apply (mkEFct(m:=mId)).
+ red.
+ intros.
+ unfold mId.
+ apply H.
+ red.
+ reflexivity.
+ red.
+ reflexivity.
+Defined.
+
+(** constants in k2 *)
+Lemma constpEFct (X:k1): EFct X -> pEFct (fun _ => X).
+Proof.
+ red.
+ intros.
+ assumption.
+Defined.
+
+(** constants in k1 *)
+Lemma constEFct (C:Set): EFct (fun _ => C).
+Proof.
+ intro.
+ set (mC:=fun A B (f:A->B)(x:C) => x).
+ apply (mkEFct(m:=mC)); red; intros; unfold mC; reflexivity.
+Defined.
+
+
+(** the option type *)
+Lemma optionEFct: EFct (fun (A:Set) => option A).
+ apply (mkEFct (X:=fun (A:Set) => option A)(m:=option_map)); red; intros.
+ destruct r.
+ simpl.
+ rewrite H.
+ reflexivity.
+ reflexivity.
+ destruct x; reflexivity.
+ destruct x; reflexivity.
+Defined.
+
+
+(** natural transformations from (X,mX) to (Y,mY) *)
+Definition NAT(X Y:k1)(j:X c_k1 Y)(mX:mon X)(mY:mon Y) : Prop :=
+ forall (A B:Set)(f:A->B)(t:X A), j B (mX A B f t) = mY _ _ f (j A t).
+
+
+Module Type LNMIt_Type.
+
+Parameter F:k2.
+Parameter FpEFct: pEFct F.
+Parameter mu20: k1.
+Definition mu2: k1:= fun A => mu20 A.
+Parameter mapmu2: mon mu2.
+Definition MItType: Type :=
+ forall G : k1, (forall X : k1, X c_k1 G -> F X c_k1 G) -> mu2 c_k1 G.
+Parameter MIt0 : MItType.
+Definition MIt : MItType:= fun G s A t => MIt0 s t.
+Definition InType : Type :=
+ forall (X:k1)(ef:EFct X)(j: X c_k1 mu2),
+ NAT j (m ef) mapmu2 -> F X c_k1 mu2.
+Parameter In : InType.
+Axiom mapmu2Red : forall (A:Set)(X:k1)(ef:EFct X)(j: X c_k1 mu2)
+ (n: NAT j (m ef) mapmu2)(t: F X A)(B:Set)(f:A->B),
+ mapmu2 f (In ef n t) = In ef n (m (FpEFct ef) f t).
+Axiom MItRed : forall (G : k1)
+ (s : forall X : k1, X c_k1 G -> F X c_k1 G)(X : k1)(ef:EFct X)(j: X c_k1 mu2)
+ (n: NAT j (m ef) mapmu2)(A:Set)(t:F X A),
+ MIt s (In ef n t) = s X (fun A => (MIt s (A:=A)) o (j A)) A t.
+Definition mu2IndType : Prop :=
+ forall (P : (forall A : Set, mu2 A -> Prop)),
+ (forall (X : k1)(ef:EFct X)(j : X c_k1 mu2)(n: NAT j (m ef) mapmu2),
+ (forall (A : Set) (x : X A), P A (j A x)) ->
+ forall (A:Set)(t : F X A), P A (In ef n t)) ->
+ forall (A : Set) (r : mu2 A), P A r.
+Axiom mu2Ind : mu2IndType.
+
+End LNMIt_Type.
+
+(** BushDepPredShort.v Version 0.2 July 2008 *)
+(** does not need impredicative Set, produces stack overflow under V8.2, tested
+with SVN 11296 *)
+
+(** Copyright Ralph Matthes, I.R.I.T., C.N.R.S. & University of Toulouse *)
+
+Set Implicit Arguments.
+
+Require Import List.
+
+Definition listk1 (A:Set) : Set := list A.
+Open Scope type_scope.
+
+Definition BushF(X:k1)(A:Set) := unit + A * X (X A).
+
+Definition bushpEFct : pEFct BushF.
+Proof.
+ unfold BushF.
+ apply sumpEFct.
+ apply constpEFct.
+ apply constEFct.
+ apply prodpEFct.
+ apply constpEFct.
+ apply idEFct.
+ apply comppEFct.
+ apply idpEFct.
+ apply idpEFct_eta.
+Defined.
+
+Module Type BUSH := LNMIt_Type with Definition F:=BushF
+ with Definition FpEFct :=
+bushpEFct.
+
+Module Bush (BushBase:BUSH).
+
+Definition Bush : k1 := BushBase.mu2.
+
+Definition bush : mon Bush := BushBase.mapmu2.
+
+End Bush.
+
+
+Definition Id : k1 := fun X => X.
+
+Fixpoint Pow (X:k1)(k:nat){struct k}:k1:=
+ match k with 0 => Id
+ | S k' => fun A => X (Pow X k' A)
+ end.
+
+Fixpoint POW (k:nat)(X:k1)(m:mon X){struct k} : mon (Pow X k) :=
+ match k return mon (Pow X k)
+ with 0 => fun _ _ f => f
+ | S k' => fun _ _ f => m _ _ (POW k' m f)
+ end.
+
+Module Type BushkToList_Type.
+
+Declare Module Import BP: BUSH.
+Definition F:=BushF.
+Definition FpEFct:= bushpEFct.
+Definition mu20 := mu20.
+Definition mu2 := mu2.
+Definition mapmu2 := mapmu2.
+Definition MItType:= MItType.
+Definition MIt0 := MIt0.
+Definition MIt := MIt.
+Definition InType := InType.
+Definition In := In.
+Definition mapmu2Red:=mapmu2Red.
+Definition MItRed:=MItRed.
+Definition mu2IndType:=mu2IndType.
+Definition mu2Ind:=mu2Ind.
+
+Definition Bush:= mu2.
+Module BushM := Bush BP.
+
+Parameter BushkToList: forall(k:nat)(A:k0)(t:Pow Bush k A), list A.
+Axiom BushkToList0: forall(A:k0)(t:Pow Bush 0 A), BushkToList 0 A t = t::nil.
+
+End BushkToList_Type.
+
+Module BushDep (BushkToListM:BushkToList_Type).
+
+Module Bush := Bush BushkToListM.
+
+Import Bush.
+Import BushkToListM.
+
+
+Lemma BushkToList0NAT: NAT(Y:=listk1) (BushkToList 0) (POW 0 bush) map.
+Proof.
+ red.
+ intros.
+ simpl.
+ rewrite BushkToList0.
+(* stack overflow for coqc and coqtop *)
+
+
+Abort.