summaryrefslogtreecommitdiff
path: root/pretyping/detyping.ml
diff options
context:
space:
mode:
Diffstat (limited to 'pretyping/detyping.ml')
-rw-r--r--pretyping/detyping.ml642
1 files changed, 377 insertions, 265 deletions
diff --git a/pretyping/detyping.ml b/pretyping/detyping.ml
index 85125a50..9ba5949a 100644
--- a/pretyping/detyping.ml
+++ b/pretyping/detyping.ml
@@ -1,19 +1,23 @@
(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
+module CVars = Vars
+
open Pp
open CErrors
open Util
open Names
open Term
+open EConstr
open Vars
open Inductiveops
-open Environ
open Glob_term
open Glob_ops
open Termops
@@ -25,8 +29,11 @@ open Mod_subst
open Misctypes
open Decl_kinds
open Context.Named.Declaration
+open Ltac_pretype
-let dl = Loc.ghost
+type _ delay =
+| Now : 'a delay
+| Later : [ `thunk ] delay
(** Should we keep details of universes during detyping ? *)
let print_universes = Flags.univ_print
@@ -64,24 +71,24 @@ let has_two_constructors lc =
let isomorphic_to_tuple lc = Int.equal (Array.length lc) 1
-let encode_bool r =
+let encode_bool ({CAst.loc} as r) =
let (x,lc) = encode_inductive r in
if not (has_two_constructors lc) then
- user_err_loc (loc_of_reference r,"encode_if",
- str "This type has not exactly two constructors.");
+ user_err ?loc ~hdr:"encode_if"
+ (str "This type has not exactly two constructors.");
x
-let encode_tuple r =
+let encode_tuple ({CAst.loc} as r) =
let (x,lc) = encode_inductive r in
if not (isomorphic_to_tuple lc) then
- user_err_loc (loc_of_reference r,"encode_tuple",
- str "This type cannot be seen as a tuple type.");
+ user_err ?loc ~hdr:"encode_tuple"
+ (str "This type cannot be seen as a tuple type.");
x
module PrintingInductiveMake =
functor (Test : sig
val encode : reference -> inductive
- val member_message : std_ppcmds -> bool -> std_ppcmds
+ val member_message : Pp.t -> bool -> Pp.t
val field : string
val title : string
end) ->
@@ -133,8 +140,7 @@ let wildcard_value = ref true
let force_wildcard () = !wildcard_value
let _ = declare_bool_option
- { optsync = true;
- optdepr = false;
+ { optdepr = false;
optname = "forced wildcard";
optkey = ["Printing";"Wildcard"];
optread = force_wildcard;
@@ -144,8 +150,7 @@ let synth_type_value = ref true
let synthetize_type () = !synth_type_value
let _ = declare_bool_option
- { optsync = true;
- optdepr = false;
+ { optdepr = false;
optname = "pattern matching return type synthesizability";
optkey = ["Printing";"Synth"];
optread = synthetize_type;
@@ -155,30 +160,27 @@ let reverse_matching_value = ref true
let reverse_matching () = !reverse_matching_value
let _ = declare_bool_option
- { optsync = true;
- optdepr = false;
+ { optdepr = false;
optname = "pattern-matching reversibility";
optkey = ["Printing";"Matching"];
optread = reverse_matching;
optwrite = (:=) reverse_matching_value }
-let print_primproj_params_value = ref true
+let print_primproj_params_value = ref false
let print_primproj_params () = !print_primproj_params_value
let _ = declare_bool_option
- { optsync = true;
- optdepr = false;
+ { optdepr = false;
optname = "printing of primitive projection parameters";
optkey = ["Printing";"Primitive";"Projection";"Parameters"];
optread = print_primproj_params;
optwrite = (:=) print_primproj_params_value }
-let print_primproj_compatibility_value = ref true
+let print_primproj_compatibility_value = ref false
let print_primproj_compatibility () = !print_primproj_compatibility_value
let _ = declare_bool_option
- { optsync = true;
- optdepr = false;
+ { optdepr = false;
optname = "backwards-compatible printing of primitive projections";
optkey = ["Printing";"Primitive";"Projection";"Compatibility"];
optread = print_primproj_compatibility;
@@ -188,7 +190,7 @@ let _ = declare_bool_option
(* Auxiliary function for MutCase printing *)
(* [computable] tries to tell if the predicate typing the result is inferable*)
-let computable p k =
+let computable sigma p k =
(* We first remove as many lambda as the arity, then we look
if it remains a lambda for a dependent elimination. This function
works for normal eta-expanded term. For non eta-expanded or
@@ -205,29 +207,29 @@ let computable p k =
sinon on perd la réciprocité de la synthèse (qui, lui,
engendrera un prédicat non dépendant) *)
- let sign,ccl = decompose_lam_assum p in
+ let sign,ccl = decompose_lam_assum sigma p in
Int.equal (Context.Rel.length sign) (k + 1)
&&
- noccur_between 1 (k+1) ccl
+ noccur_between sigma 1 (k+1) ccl
-let lookup_name_as_displayed env t s =
- let rec lookup avoid n c = match kind_of_term c with
+let lookup_name_as_displayed env sigma t s =
+ let rec lookup avoid n c = match EConstr.kind sigma c with
| Prod (name,_,c') ->
- (match compute_displayed_name_in RenamingForGoal avoid name c' with
+ (match compute_displayed_name_in sigma RenamingForGoal avoid name c' with
| (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| LetIn (name,_,_,c') ->
- (match compute_displayed_name_in RenamingForGoal avoid name c' with
+ (match compute_displayed_name_in sigma RenamingForGoal avoid name c' with
| (Name id,avoid') -> if Id.equal id s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| Cast (c,_,_) -> lookup avoid n c
| _ -> None
- in lookup (ids_of_named_context (named_context env)) 1 t
+ in lookup (Environ.ids_of_named_context_val (Environ.named_context_val env)) 1 t
-let lookup_index_as_renamed env t n =
- let rec lookup n d c = match kind_of_term c with
+let lookup_index_as_renamed env sigma t n =
+ let rec lookup n d c = match EConstr.kind sigma c with
| Prod (name,_,c') ->
- (match compute_displayed_name_in RenamingForGoal [] name c' with
+ (match compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name c' with
(Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if Int.equal n 0 then
@@ -237,7 +239,7 @@ let lookup_index_as_renamed env t n =
else
lookup (n-1) (d+1) c')
| LetIn (name,_,_,c') ->
- (match compute_displayed_name_in RenamingForGoal [] name c' with
+ (match compute_displayed_name_in sigma RenamingForGoal Id.Set.empty name c' with
| (Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if Int.equal n 0 then
@@ -252,22 +254,109 @@ let lookup_index_as_renamed env t n =
in lookup n 1 t
(**********************************************************************)
+(* Factorization of match patterns *)
+
+let print_factorize_match_patterns = ref true
+
+let _ =
+ let open Goptions in
+ declare_bool_option
+ { optdepr = false;
+ optname = "factorization of \"match\" patterns in printing";
+ optkey = ["Printing";"Factorizable";"Match";"Patterns"];
+ optread = (fun () -> !print_factorize_match_patterns);
+ optwrite = (fun b -> print_factorize_match_patterns := b) }
+
+let print_allow_match_default_clause = ref true
+
+let _ =
+ let open Goptions in
+ declare_bool_option
+ { optdepr = false;
+ optname = "possible use of \"match\" default pattern in printing";
+ optkey = ["Printing";"Allow";"Match";"Default";"Clause"];
+ optread = (fun () -> !print_allow_match_default_clause);
+ optwrite = (fun b -> print_allow_match_default_clause := b) }
+
+let rec join_eqns (ids,rhs as x) patll = function
+ | ({CAst.loc; v=(ids',patl',rhs')} as eqn')::rest ->
+ if not !Flags.raw_print && !print_factorize_match_patterns &&
+ List.eq_set Id.equal ids ids' && glob_constr_eq rhs rhs'
+ then
+ join_eqns x (patl'::patll) rest
+ else
+ let eqn,rest = join_eqns x patll rest in
+ eqn, eqn'::rest
+ | [] ->
+ patll, []
+
+let number_of_patterns {CAst.v=(_ids,patll,_rhs)} = List.length patll
+
+let is_default_candidate {CAst.v=(ids,_patll,_rhs)} = ids = []
+
+let rec move_more_factorized_default_candidate_to_end eqn n = function
+ | eqn' :: eqns ->
+ let set,get = set_temporary_memory () in
+ if is_default_candidate eqn' && set (number_of_patterns eqn') >= n then
+ let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn' (get ()) eqns in
+ if isbest then false, dft, eqns else false, dft, eqn' :: eqns
+ else
+ let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn n eqns in
+ isbest, dft, eqn' :: eqns
+ | [] -> true, Some eqn, []
+
+let rec select_default_clause = function
+ | eqn :: eqns ->
+ let set,get = set_temporary_memory () in
+ if is_default_candidate eqn && set (number_of_patterns eqn) > 1 then
+ let isbest, dft, eqns = move_more_factorized_default_candidate_to_end eqn (get ()) eqns in
+ if isbest then dft, eqns else dft, eqn :: eqns
+ else
+ let dft, eqns = select_default_clause eqns in dft, eqn :: eqns
+ | [] -> None, []
+
+let factorize_eqns eqns =
+ let open CAst in
+ let rec aux found = function
+ | {loc;v=(ids,patl,rhs)}::rest ->
+ let patll,rest = join_eqns (ids,rhs) [patl] rest in
+ aux (CAst.make ?loc (ids,patll,rhs)::found) rest
+ | [] ->
+ found in
+ let eqns = aux [] (List.rev eqns) in
+ let mk_anon patl = List.map (fun _ -> DAst.make @@ PatVar Anonymous) patl in
+ let open CAst in
+ if not !Flags.raw_print && !print_allow_match_default_clause && eqns <> [] then
+ match select_default_clause eqns with
+ (* At least two clauses and the last one is disjunctive with no variables *)
+ | Some {loc=gloc;v=([],patl::_::_,rhs)}, (_::_ as eqns) ->
+ eqns@[CAst.make ?loc:gloc ([],[mk_anon patl],rhs)]
+ (* Only one clause which is disjunctive with no variables: we keep at least one constructor *)
+ (* so that it is not interpreted as a dummy "match" *)
+ | Some {loc=gloc;v=([],patl::patl'::_,rhs)}, [] ->
+ [CAst.make ?loc:gloc ([],[patl;mk_anon patl'],rhs)]
+ | Some {v=((_::_,_,_ | _,([]|[_]),_))}, _ -> assert false
+ | None, eqns -> eqns
+ else
+ eqns
+
+(**********************************************************************)
(* Fragile algorithm to reverse pattern-matching compilation *)
-let update_name na ((_,(e,_)),c) =
+let update_name sigma na ((_,(e,_)),c) =
match na with
- | Name _ when force_wildcard () && noccurn (List.index Name.equal na e) c ->
+ | Name _ when force_wildcard () && noccurn sigma (List.index Name.equal na e) c ->
Anonymous
| _ ->
na
-let rec decomp_branch tags nal b (avoid,env as e) c =
+let rec decomp_branch tags nal b (avoid,env as e) sigma c =
let flag = if b then RenamingForGoal else RenamingForCasesPattern (fst env,c) in
match tags with
| [] -> (List.rev nal,(e,c))
| b::tags ->
let na,c,f,body,t =
- match kind_of_term (strip_outer_cast c), b with
+ match EConstr.kind sigma (strip_outer_cast sigma c), b with
| Lambda (na,t,c),false -> na,c,compute_displayed_let_name_in,None,Some t
| LetIn (na,b,t,c),true ->
na,c,compute_displayed_name_in,Some b,Some t
@@ -277,60 +366,60 @@ let rec decomp_branch tags nal b (avoid,env as e) c =
| _, true ->
Anonymous,lift 1 c,compute_displayed_name_in,None,None
in
- let na',avoid' = f flag avoid na c in
+ let na',avoid' = f sigma flag avoid na c in
decomp_branch tags (na'::nal) b
- (avoid', add_name_opt na' body t env) c
+ (avoid', add_name_opt na' body t env) sigma c
-let rec build_tree na isgoal e ci cl =
- let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in
+let rec build_tree na isgoal e sigma ci cl =
+ let mkpat n rhs pl = DAst.make @@ PatCstr((ci.ci_ind,n+1),pl,update_name sigma na rhs) in
let cnl = ci.ci_pp_info.cstr_tags in
- let cna = ci.ci_cstr_nargs in
List.flatten
(List.init (Array.length cl)
- (fun i -> contract_branch isgoal e (cnl.(i),cna.(i),mkpat i,cl.(i))))
+ (fun i -> contract_branch isgoal e sigma (cnl.(i),mkpat i,cl.(i))))
-and align_tree nal isgoal (e,c as rhs) = match nal with
- | [] -> [[],rhs]
+and align_tree nal isgoal (e,c as rhs) sigma = match nal with
+ | [] -> [Id.Set.empty,[],rhs]
| na::nal ->
- match kind_of_term c with
+ match EConstr.kind sigma c with
| Case (ci,p,c,cl) when
- eq_constr c (mkRel (List.index Name.equal na (fst (snd e))))
+ eq_constr sigma c (mkRel (List.index Name.equal na (fst (snd e))))
&& not (Int.equal (Array.length cl) 0)
&& (* don't contract if p dependent *)
- computable p (List.length ci.ci_pp_info.ind_tags) (* FIXME: can do better *) ->
- let clauses = build_tree na isgoal e ci cl in
+ computable sigma p (List.length ci.ci_pp_info.ind_tags) (* FIXME: can do better *) ->
+ let clauses = build_tree na isgoal e sigma ci cl in
List.flatten
- (List.map (fun (pat,rhs) ->
- let lines = align_tree nal isgoal rhs in
- List.map (fun (hd,rest) -> pat::hd,rest) lines)
+ (List.map (fun (ids,pat,rhs) ->
+ let lines = align_tree nal isgoal rhs sigma in
+ List.map (fun (ids',hd,rest) -> Id.Set.fold Id.Set.add ids ids',pat::hd,rest) lines)
clauses)
| _ ->
- let pat = PatVar(dl,update_name na rhs) in
- let mat = align_tree nal isgoal rhs in
- List.map (fun (hd,rest) -> pat::hd,rest) mat
+ let na = update_name sigma na rhs in
+ let pat = DAst.make @@ PatVar na in
+ let mat = align_tree nal isgoal rhs sigma in
+ List.map (fun (ids,hd,rest) -> Nameops.Name.fold_right Id.Set.add na ids,pat::hd,rest) mat
-and contract_branch isgoal e (cdn,can,mkpat,b) =
- let nal,rhs = decomp_branch cdn [] isgoal e b in
- let mat = align_tree nal isgoal rhs in
- List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat
+and contract_branch isgoal e sigma (cdn,mkpat,rhs) =
+ let nal,rhs = decomp_branch cdn [] isgoal e sigma rhs in
+ let mat = align_tree nal isgoal rhs sigma in
+ List.map (fun (ids,hd,rhs) -> ids,mkpat rhs hd,rhs) mat
(**********************************************************************)
(* Transform internal representation of pattern-matching into list of *)
(* clauses *)
-let is_nondep_branch c l =
+let is_nondep_branch sigma c l =
try
(* FIXME: do better using tags from l *)
- let sign,ccl = decompose_lam_n_decls (List.length l) c in
- noccur_between 1 (Context.Rel.length sign) ccl
+ let sign,ccl = decompose_lam_n_decls sigma (List.length l) c in
+ noccur_between sigma 1 (Context.Rel.length sign) ccl
with e when CErrors.noncritical e -> (* Not eta-expanded or not reduced *)
false
let extract_nondep_branches test c b l =
let rec strip l r =
- match r,l with
- | r, [] -> r
- | GLambda (_,_,_,_,t), false::l -> strip l t
+ match DAst.get r, l with
+ | r', [] -> r
+ | GLambda (_,_,_,t), false::l -> strip l t
| GLetIn (_,_,_,t), true::l -> strip l t
(* FIXME: do we need adjustment? *)
| _,_ -> assert false in
@@ -338,10 +427,10 @@ let extract_nondep_branches test c b l =
let it_destRLambda_or_LetIn_names l c =
let rec aux l nal c =
- match c, l with
+ match DAst.get c, l with
| _, [] -> (List.rev nal,c)
- | GLambda (_,na,_,_,c), false::l -> aux l (na::nal) c
- | GLetIn (_,na,_,c), true::l -> aux l (na::nal) c
+ | GLambda (na,_,_,c), false::l -> aux l (na::nal) c
+ | GLetIn (na,_,_,c), true::l -> aux l (na::nal) c
| _, true::l -> (* let-expansion *) aux l (Anonymous :: nal) c
| _, false::l ->
(* eta-expansion *)
@@ -352,11 +441,11 @@ let it_destRLambda_or_LetIn_names l c =
x
in
let x = next (free_glob_vars c) in
- let a = GVar (dl,x) in
+ let a = DAst.make @@ GVar x in
aux l (Name x :: nal)
- (match c with
- | GApp (loc,p,l) -> GApp (loc,p,l@[a])
- | _ -> (GApp (dl,c,[a])))
+ (match DAst.get c with
+ | GApp (p,l) -> DAst.make ?loc:c.CAst.loc @@ GApp (p,l@[a])
+ | _ -> DAst.make @@ GApp (c,[a]))
in aux l [] c
let detype_case computable detype detype_eqns testdep avoid data p c bl =
@@ -368,17 +457,15 @@ let detype_case computable detype detype_eqns testdep avoid data p c bl =
then
Anonymous, None, None
else
- match Option.map detype p with
- | None -> Anonymous, None, None
- | Some p ->
- let nl,typ = it_destRLambda_or_LetIn_names k p in
- let n,typ = match typ with
- | GLambda (_,x,_,t,c) -> x, c
- | _ -> Anonymous, typ in
- let aliastyp =
- if List.for_all (Name.equal Anonymous) nl then None
- else Some (dl,indsp,nl) in
- n, aliastyp, Some typ
+ let p = detype p in
+ let nl,typ = it_destRLambda_or_LetIn_names k p in
+ let n,typ = match DAst.get typ with
+ | GLambda (x,_,t,c) -> x, c
+ | _ -> Anonymous, typ in
+ let aliastyp =
+ if List.for_all (Name.equal Anonymous) nl then None
+ else Some (CAst.make (indsp,nl)) in
+ n, aliastyp, Some typ
in
let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in
let tag =
@@ -399,20 +486,24 @@ let detype_case computable detype detype_eqns testdep avoid data p c bl =
| LetStyle, None ->
let bl' = Array.map detype bl in
let (nal,d) = it_destRLambda_or_LetIn_names constagsl.(0) bl'.(0) in
- GLetTuple (dl,nal,(alias,pred),tomatch,d)
+ GLetTuple (nal,(alias,pred),tomatch,d)
| IfStyle, None ->
let bl' = Array.map detype bl in
let nondepbrs =
Array.map3 (extract_nondep_branches testdep) bl bl' constagsl in
if Array.for_all ((!=) None) nondepbrs then
- GIf (dl,tomatch,(alias,pred),
+ GIf (tomatch,(alias,pred),
Option.get nondepbrs.(0),Option.get nondepbrs.(1))
else
let eqnl = detype_eqns constructs constagsl bl in
- GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
+ GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl)
| _ ->
let eqnl = detype_eqns constructs constagsl bl in
- GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
+ GCases (tag,pred,[tomatch,(alias,aliastyp)],eqnl)
+
+let detype_universe sigma u =
+ let fn (l, n) = Some (Termops.reference_of_level sigma l, n) in
+ Univ.Universe.map fn u
let detype_sort sigma = function
| Prop Null -> GProp
@@ -420,7 +511,7 @@ let detype_sort sigma = function
| Type u ->
GType
(if !print_universes
- then [dl, Pp.string_of_ppcmds (Univ.Universe.pr_with (Evd.pr_evd_level sigma) u)]
+ then detype_universe sigma u
else [])
type binder_kind = BProd | BLambda | BLetIn
@@ -428,72 +519,85 @@ type binder_kind = BProd | BLambda | BLetIn
(**********************************************************************)
(* Main detyping function *)
-let detype_anonymous = ref (fun loc n -> anomaly ~label:"detype" (Pp.str "index to an anonymous variable"))
+let detype_anonymous = ref (fun ?loc n -> anomaly ~label:"detype" (Pp.str "index to an anonymous variable."))
let set_detype_anonymous f = detype_anonymous := f
let detype_level sigma l =
- GType (Some (dl, Pp.string_of_ppcmds (Evd.pr_evd_level sigma l)))
+ let l = Termops.reference_of_level sigma l in
+ GType (UNamed l)
let detype_instance sigma l =
+ let l = EInstance.kind sigma l in
if Univ.Instance.is_empty l then None
else Some (List.map (detype_level sigma) (Array.to_list (Univ.Instance.to_array l)))
-let rec detype flags avoid env sigma t =
- match kind_of_term (collapse_appl t) with
+let delay (type a) (d : a delay) (f : a delay -> _ -> _ -> _ -> _ -> _ -> a glob_constr_r) flags env avoid sigma t : a glob_constr_g =
+ match d with
+ | Now -> DAst.make (f d flags env avoid sigma t)
+ | Later -> DAst.delay (fun () -> f d flags env avoid sigma t)
+
+let rec detype d flags avoid env sigma t =
+ delay d detype_r flags avoid env sigma t
+
+and detype_r d flags avoid env sigma t =
+ match EConstr.kind sigma (collapse_appl sigma t) with
| Rel n ->
(try match lookup_name_of_rel n (fst env) with
- | Name id -> GVar (dl, id)
- | Anonymous -> !detype_anonymous dl n
+ | Name id -> GVar id
+ | Anonymous -> GVar (!detype_anonymous n)
with Not_found ->
let s = "_UNBOUND_REL_"^(string_of_int n)
- in GVar (dl, Id.of_string s))
+ in GVar (Id.of_string s))
| Meta n ->
(* Meta in constr are not user-parsable and are mapped to Evar *)
- (* using numbers to be unparsable *)
- GEvar (dl, Id.of_string ("M" ^ string_of_int n), [])
+ if n = Constr_matching.special_meta then
+ (* Using a dash to be unparsable *)
+ GEvar (Id.of_string_soft "CONTEXT-HOLE", [])
+ else
+ GEvar (Id.of_string_soft ("M" ^ string_of_int n), [])
| Var id ->
- (try let _ = Global.lookup_named id in GRef (dl, VarRef id, None)
- with Not_found -> GVar (dl, id))
- | Sort s -> GSort (dl,detype_sort sigma s)
+ (try let _ = Global.lookup_named id in GRef (VarRef id, None)
+ with Not_found -> GVar id)
+ | Sort s -> GSort (detype_sort sigma (ESorts.kind sigma s))
| Cast (c1,REVERTcast,c2) when not !Flags.raw_print ->
- detype flags avoid env sigma c1
+ DAst.get (detype d flags avoid env sigma c1)
| Cast (c1,k,c2) ->
- let d1 = detype flags avoid env sigma c1 in
- let d2 = detype flags avoid env sigma c2 in
+ let d1 = detype d flags avoid env sigma c1 in
+ let d2 = detype d flags avoid env sigma c2 in
let cast = match k with
| VMcast -> CastVM d2
| NATIVEcast -> CastNative d2
| _ -> CastConv d2
in
- GCast(dl,d1,cast)
- | Prod (na,ty,c) -> detype_binder flags BProd avoid env sigma na None ty c
- | Lambda (na,ty,c) -> detype_binder flags BLambda avoid env sigma na None ty c
- | LetIn (na,b,ty,c) -> detype_binder flags BLetIn avoid env sigma na (Some b) ty c
+ GCast(d1,cast)
+ | Prod (na,ty,c) -> detype_binder d flags BProd avoid env sigma na None ty c
+ | Lambda (na,ty,c) -> detype_binder d flags BLambda avoid env sigma na None ty c
+ | LetIn (na,b,ty,c) -> detype_binder d flags BLetIn avoid env sigma na (Some b) ty c
| App (f,args) ->
let mkapp f' args' =
- match f' with
- | GApp (dl',f',args'') ->
- GApp (dl,f',args''@args')
- | _ -> GApp (dl,f',args')
+ match DAst.get f' with
+ | GApp (f',args'') ->
+ GApp (f',args''@args')
+ | _ -> GApp (f',args')
in
- mkapp (detype flags avoid env sigma f)
- (Array.map_to_list (detype flags avoid env sigma) args)
- | Const (sp,u) -> GRef (dl, ConstRef sp, detype_instance sigma u)
+ mkapp (detype d flags avoid env sigma f)
+ (Array.map_to_list (detype d flags avoid env sigma) args)
+ | Const (sp,u) -> GRef (ConstRef sp, detype_instance sigma u)
| Proj (p,c) ->
let noparams () =
let pb = Environ.lookup_projection p (snd env) in
let pars = pb.Declarations.proj_npars in
- let hole = GHole(Loc.ghost,Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None) in
+ let hole = DAst.make @@ GHole(Evar_kinds.InternalHole,Misctypes.IntroAnonymous,None) in
let args = List.make pars hole in
- GApp (dl, GRef (dl, ConstRef (Projection.constant p), None),
- (args @ [detype flags avoid env sigma c]))
+ GApp (DAst.make @@ GRef (ConstRef (Projection.constant p), None),
+ (args @ [detype d flags avoid env sigma c]))
in
if fst flags || !Flags.in_debugger || !Flags.in_toplevel then
try noparams ()
with _ ->
(* lax mode, used by debug printers only *)
- GApp (dl, GRef (dl, ConstRef (Projection.constant p), None),
- [detype flags avoid env sigma c])
+ GApp (DAst.make @@ GRef (ConstRef (Projection.constant p), None),
+ [detype d flags avoid env sigma c])
else
if print_primproj_compatibility () && Projection.unfolded p then
(** Print the compatibility match version *)
@@ -504,16 +608,18 @@ let rec detype flags avoid env sigma t =
let ty = Retyping.get_type_of (snd env) sigma c in
let ((ind,u), args) = Inductiveops.find_mrectype (snd env) sigma ty in
let body' = strip_lam_assum body in
- let body' = subst_instance_constr u body' in
+ let u = EInstance.kind sigma u in
+ let body' = CVars.subst_instance_constr u body' in
+ let body' = EConstr.of_constr body' in
substl (c :: List.rev args) body'
with Retyping.RetypeError _ | Not_found ->
anomaly (str"Cannot detype an unfolded primitive projection.")
- in detype flags avoid env sigma c'
+ in DAst.get (detype d flags avoid env sigma c')
else
if print_primproj_params () then
try
let c = Retyping.expand_projection (snd env) sigma p c [] in
- detype flags avoid env sigma c
+ DAst.get (detype d flags avoid env sigma c)
with Retyping.RetypeError _ -> noparams ()
else noparams ()
@@ -523,133 +629,134 @@ let rec detype flags avoid env sigma t =
| LocalDef _ -> true
| LocalAssum (id,_) ->
try let n = List.index Name.equal (Name id) (fst env) in
- isRelN n c
- with Not_found -> isVarId id c
+ isRelN sigma n c
+ with Not_found -> isVarId sigma id c
in
let id,l =
try
let id = match Evd.evar_ident evk sigma with
- | None -> Evd.pr_evar_suggested_name evk sigma
+ | None -> Termops.pr_evar_suggested_name evk sigma
| Some id -> id
in
let l = Evd.evar_instance_array bound_to_itself_or_letin (Evd.find sigma evk) cl in
- let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match kind_of_term c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in
- let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel c && Int.Set.mem (destRel c) rels || isVar c && (Id.Set.mem (destVar c) fvs)))) (Evd.find sigma evk) cl in
+ let fvs,rels = List.fold_left (fun (fvs,rels) (_,c) -> match EConstr.kind sigma c with Rel n -> (fvs,Int.Set.add n rels) | Var id -> (Id.Set.add id fvs,rels) | _ -> (fvs,rels)) (Id.Set.empty,Int.Set.empty) l in
+ let l = Evd.evar_instance_array (fun d c -> not !print_evar_arguments && (bound_to_itself_or_letin d c && not (isRel sigma c && Int.Set.mem (destRel sigma c) rels || isVar sigma c && (Id.Set.mem (destVar sigma c) fvs)))) (Evd.find sigma evk) cl in
id,l
with Not_found ->
- Id.of_string ("X" ^ string_of_int (Evar.repr evk)),
+ Id.of_string ("X" ^ string_of_int (Evar.repr evk)),
(Array.map_to_list (fun c -> (Id.of_string "__",c)) cl)
in
- GEvar (dl,id,
- List.map (on_snd (detype flags avoid env sigma)) l)
+ GEvar (id,
+ List.map (on_snd (detype d flags avoid env sigma)) l)
| Ind (ind_sp,u) ->
- GRef (dl, IndRef ind_sp, detype_instance sigma u)
+ GRef (IndRef ind_sp, detype_instance sigma u)
| Construct (cstr_sp,u) ->
- GRef (dl, ConstructRef cstr_sp, detype_instance sigma u)
+ GRef (ConstructRef cstr_sp, detype_instance sigma u)
| Case (ci,p,c,bl) ->
- let comp = computable p (List.length (ci.ci_pp_info.ind_tags)) in
- detype_case comp (detype flags avoid env sigma)
- (detype_eqns flags avoid env sigma ci comp)
- is_nondep_branch avoid
+ let comp = computable sigma p (List.length (ci.ci_pp_info.ind_tags)) in
+ detype_case comp (detype d flags avoid env sigma)
+ (detype_eqns d flags avoid env sigma ci comp)
+ (is_nondep_branch sigma) avoid
(ci.ci_ind,ci.ci_pp_info.style,
ci.ci_pp_info.cstr_tags,ci.ci_pp_info.ind_tags)
- (Some p) c bl
- | Fix (nvn,recdef) -> detype_fix flags avoid env sigma nvn recdef
- | CoFix (n,recdef) -> detype_cofix flags avoid env sigma n recdef
+ p c bl
+ | Fix (nvn,recdef) -> detype_fix d flags avoid env sigma nvn recdef
+ | CoFix (n,recdef) -> detype_cofix d flags avoid env sigma n recdef
-and detype_fix flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
+and detype_fix d flags avoid env sigma (vn,_ as nvn) (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left2
(fun (avoid, env, l) na ty ->
let id = next_name_away na avoid in
- (id::avoid, add_name (Name id) None ty env, id::l))
+ (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
(avoid, env, []) names tys in
let n = Array.length tys in
let v = Array.map3
- (fun c t i -> share_names flags (i+1) [] def_avoid def_env sigma c (lift n t))
+ (fun c t i -> share_names d flags (i+1) [] def_avoid def_env sigma c (lift n t))
bodies tys vn in
- GRec(dl,GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
+ GRec(GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
-and detype_cofix flags avoid env sigma n (names,tys,bodies) =
+and detype_cofix d flags avoid env sigma n (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left2
(fun (avoid, env, l) na ty ->
let id = next_name_away na avoid in
- (id::avoid, add_name (Name id) None ty env, id::l))
+ (Id.Set.add id avoid, add_name (Name id) None ty env, id::l))
(avoid, env, []) names tys in
let ntys = Array.length tys in
let v = Array.map2
- (fun c t -> share_names flags 0 [] def_avoid def_env sigma c (lift ntys t))
+ (fun c t -> share_names d flags 0 [] def_avoid def_env sigma c (lift ntys t))
bodies tys in
- GRec(dl,GCoFix n,Array.of_list (List.rev lfi),
+ GRec(GCoFix n,Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
-and share_names flags n l avoid env sigma c t =
- match kind_of_term c, kind_of_term t with
+and share_names d flags n l avoid env sigma c t =
+ match EConstr.kind sigma c, EConstr.kind sigma t with
(* factorize even when not necessary to have better presentation *)
| Lambda (na,t,c), Prod (na',t',c') ->
let na = match (na,na') with
Name _, _ -> na
| _, Name _ -> na'
| _ -> na in
- let t' = detype flags avoid env sigma t in
+ let t' = detype d flags avoid env sigma t in
let id = next_name_away na avoid in
- let avoid = id::avoid and env = add_name (Name id) None t env in
- share_names flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
+ let avoid = Id.Set.add id avoid and env = add_name (Name id) None t env in
+ share_names d flags (n-1) ((Name id,Explicit,None,t')::l) avoid env sigma c c'
(* May occur for fix built interactively *)
| LetIn (na,b,t',c), _ when n > 0 ->
- let t'' = detype flags avoid env sigma t' in
- let b' = detype flags avoid env sigma b in
+ let t'' = detype d flags avoid env sigma t' in
+ let b' = detype d flags avoid env sigma b in
let id = next_name_away na avoid in
- let avoid = id::avoid and env = add_name (Name id) (Some b) t' env in
- share_names flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
+ let avoid = Id.Set. add id avoid and env = add_name (Name id) (Some b) t' env in
+ share_names d flags n ((Name id,Explicit,Some b',t'')::l) avoid env sigma c (lift 1 t)
(* Only if built with the f/n notation or w/o let-expansion in types *)
| _, LetIn (_,b,_,t) when n > 0 ->
- share_names flags n l avoid env sigma c (subst1 b t)
+ share_names d flags n l avoid env sigma c (subst1 b t)
(* If it is an open proof: we cheat and eta-expand *)
| _, Prod (na',t',c') when n > 0 ->
- let t'' = detype flags avoid env sigma t' in
+ let t'' = detype d flags avoid env sigma t' in
let id = next_name_away na' avoid in
- let avoid = id::avoid and env = add_name (Name id) None t' env in
+ let avoid = Id.Set.add id avoid and env = add_name (Name id) None t' env in
let appc = mkApp (lift 1 c,[|mkRel 1|]) in
- share_names flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
+ share_names d flags (n-1) ((Name id,Explicit,None,t'')::l) avoid env sigma appc c'
(* If built with the f/n notation: we renounce to share names *)
| _ ->
if n>0 then Feedback.msg_debug (strbrk "Detyping.detype: cannot factorize fix enough");
- let c = detype flags avoid env sigma c in
- let t = detype flags avoid env sigma t in
+ let c = detype d flags avoid env sigma c in
+ let t = detype d flags avoid env sigma t in
(List.rev l,c,t)
-and detype_eqns flags avoid env sigma ci computable constructs consnargsl bl =
+and detype_eqns d flags avoid env sigma ci computable constructs consnargsl bl =
try
if !Flags.raw_print || not (reverse_matching ()) then raise Exit;
- let mat = build_tree Anonymous (snd flags) (avoid,env) ci bl in
- List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype flags avoid env sigma c))
+ let mat = build_tree Anonymous (snd flags) (avoid,env) sigma ci bl in
+ List.map (fun (ids,pat,((avoid,env),c)) ->
+ CAst.make (Id.Set.elements ids,[pat],detype d flags avoid env sigma c))
mat
with e when CErrors.noncritical e ->
Array.to_list
- (Array.map3 (detype_eqn flags avoid env sigma) constructs consnargsl bl)
+ (Array.map3 (detype_eqn d flags avoid env sigma) constructs consnargsl bl)
-and detype_eqn (lax,isgoal as flags) avoid env sigma constr construct_nargs branch =
+and detype_eqn d (lax,isgoal as flags) avoid env sigma constr construct_nargs branch =
let make_pat x avoid env b body ty ids =
- if force_wildcard () && noccurn 1 b then
- PatVar (dl,Anonymous),avoid,(add_name Anonymous body ty env),ids
+ if force_wildcard () && noccurn sigma 1 b then
+ DAst.make @@ PatVar Anonymous,avoid,(add_name Anonymous body ty env),ids
else
let flag = if isgoal then RenamingForGoal else RenamingForCasesPattern (fst env,b) in
- let na,avoid' = compute_displayed_name_in flag avoid x b in
- PatVar (dl,na),avoid',(add_name na body ty env),add_vname ids na
+ let na,avoid' = compute_displayed_name_in sigma flag avoid x b in
+ DAst.make (PatVar na),avoid',(add_name na body ty env),add_vname ids na
in
let rec buildrec ids patlist avoid env l b =
- match kind_of_term b, l with
- | _, [] ->
- (dl, Id.Set.elements ids,
- [PatCstr(dl, constr, List.rev patlist,Anonymous)],
- detype flags avoid env sigma b)
+ match EConstr.kind sigma b, l with
+ | _, [] -> CAst.make @@
+ (Id.Set.elements ids,
+ [DAst.make @@ PatCstr(constr, List.rev patlist,Anonymous)],
+ detype d flags avoid env sigma b)
| Lambda (x,t,b), false::l ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b None t ids in
buildrec new_ids (pat::patlist) new_avoid new_env l b
@@ -662,7 +769,7 @@ and detype_eqn (lax,isgoal as flags) avoid env sigma constr construct_nargs bran
buildrec ids patlist avoid env l c
| _, true::l ->
- let pat = PatVar (dl,Anonymous) in
+ let pat = DAst.make @@ PatVar Anonymous in
buildrec ids (pat::patlist) avoid env l b
| _, false::l ->
@@ -677,25 +784,24 @@ and detype_eqn (lax,isgoal as flags) avoid env sigma constr construct_nargs bran
in
buildrec Id.Set.empty [] avoid env construct_nargs branch
-and detype_binder (lax,isgoal as flags) bk avoid env sigma na body ty c =
+and detype_binder d (lax,isgoal as flags) bk avoid env sigma na body ty c =
let flag = if isgoal then RenamingForGoal else RenamingElsewhereFor (fst env,c) in
let na',avoid' = match bk with
- | BLetIn -> compute_displayed_let_name_in flag avoid na c
- | _ -> compute_displayed_name_in flag avoid na c in
- let r = detype flags avoid' (add_name na' body ty env) sigma c in
+ | BLetIn -> compute_displayed_let_name_in sigma flag avoid na c
+ | _ -> compute_displayed_name_in sigma flag avoid na c in
+ let r = detype d flags avoid' (add_name na' body ty env) sigma c in
match bk with
- | BProd -> GProd (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r)
- | BLambda -> GLambda (dl, na',Explicit,detype (lax,false) avoid env sigma ty, r)
+ | BProd -> GProd (na',Explicit,detype d (lax,false) avoid env sigma ty, r)
+ | BLambda -> GLambda (na',Explicit,detype d (lax,false) avoid env sigma ty, r)
| BLetIn ->
- let c = detype (lax,false) avoid env sigma (Option.get body) in
+ let c = detype d (lax,false) avoid env sigma (Option.get body) in
(* Heuristic: we display the type if in Prop *)
let s = try Retyping.get_sort_family_of (snd env) sigma ty with _ when !Flags.in_debugger || !Flags.in_toplevel -> InType (* Can fail because of sigma missing in debugger *) in
- let c = if s != InProp then c else
- GCast (dl, c, CastConv (detype (lax,false) avoid env sigma ty)) in
- GLetIn (dl, na', c, r)
+ let t = if s != InProp && not !Flags.raw_print then None else Some (detype d (lax,false) avoid env sigma ty) in
+ GLetIn (na', c, t, r)
-let detype_rel_context ?(lax=false) where avoid env sigma sign =
- let where = Option.map (fun c -> it_mkLambda_or_LetIn c sign) where in
+let detype_rel_context d ?(lax=false) where avoid env sigma sign =
+ let where = Option.map (fun c -> EConstr.it_mkLambda_or_LetIn c sign) where in
let rec aux avoid env = function
| [] -> []
| decl::rest ->
@@ -707,26 +813,30 @@ let detype_rel_context ?(lax=false) where avoid env sigma sign =
| None -> na,avoid
| Some c ->
if is_local_def decl then
- compute_displayed_let_name_in
+ compute_displayed_let_name_in sigma
(RenamingElsewhereFor (fst env,c)) avoid na c
else
- compute_displayed_name_in
+ compute_displayed_name_in sigma
(RenamingElsewhereFor (fst env,c)) avoid na c in
let b = match decl with
| LocalAssum _ -> None
| LocalDef (_,b,_) -> Some b
in
- let b' = Option.map (detype (lax,false) avoid env sigma) b in
- let t' = detype (lax,false) avoid env sigma t in
+ let b' = Option.map (detype d (lax,false) avoid env sigma) b in
+ let t' = detype d (lax,false) avoid env sigma t in
(na',Explicit,b',t') :: aux avoid' (add_name na' b t env) rest
in aux avoid env (List.rev sign)
let detype_names isgoal avoid nenv env sigma t =
- detype (false,isgoal) avoid (nenv,env) sigma t
-let detype ?(lax=false) isgoal avoid env sigma t =
- detype (lax,isgoal) avoid (names_of_rel_context env, env) sigma t
+ detype Now (false,isgoal) avoid (nenv,env) sigma t
+let detype d ?(lax=false) isgoal avoid env sigma t =
+ detype d (lax,isgoal) avoid (names_of_rel_context env, env) sigma t
+
+let detype_rel_context d ?lax where avoid env sigma sign =
+ detype_rel_context d ?lax where avoid env sigma sign
let detype_closed_glob ?lax isgoal avoid env sigma t =
+ let open Context.Rel.Declaration in
let convert_id cl id =
try Id.Map.find id cl.idents
with Not_found -> id
@@ -735,11 +845,11 @@ let detype_closed_glob ?lax isgoal avoid env sigma t =
| Name id -> Name (convert_id cl id)
| Anonymous -> Anonymous
in
- let rec detype_closed_glob cl = function
- | GVar (loc,id) ->
+ let rec detype_closed_glob cl cg : Glob_term.glob_constr = DAst.map (function
+ | GVar id ->
(* if [id] is bound to a name. *)
begin try
- GVar(loc,Id.Map.find id cl.idents)
+ GVar(Id.Map.find id cl.idents)
(* if [id] is bound to a typed term *)
with Not_found -> try
(* assumes [detype] does not raise [Not_found] exceptions *)
@@ -747,127 +857,131 @@ let detype_closed_glob ?lax isgoal avoid env sigma t =
(* spiwack: I'm not sure it is the right thing to do,
but I'm computing the detyping environment like
[Printer.pr_constr_under_binders_env] does. *)
- let assums = List.map (fun id -> (Name id,(* dummy *) mkProp)) b in
- let env = Termops.push_rels_assum assums env in
- detype ?lax isgoal avoid env sigma c
+ let assums = List.map (fun id -> LocalAssum (Name id,(* dummy *) mkProp)) b in
+ let env = push_rel_context assums env in
+ DAst.get (detype Now ?lax isgoal avoid env sigma c)
(* if [id] is bound to a [closed_glob_constr]. *)
with Not_found -> try
let {closure;term} = Id.Map.find id cl.untyped in
- detype_closed_glob closure term
+ DAst.get (detype_closed_glob closure term)
(* Otherwise [id] stands for itself *)
with Not_found ->
- GVar(loc,id)
+ GVar id
end
- | GLambda (loc,id,k,t,c) ->
+ | GLambda (id,k,t,c) ->
let id = convert_name cl id in
- GLambda(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c)
- | GProd (loc,id,k,t,c) ->
+ GLambda(id,k,detype_closed_glob cl t, detype_closed_glob cl c)
+ | GProd (id,k,t,c) ->
let id = convert_name cl id in
- GProd(loc,id,k,detype_closed_glob cl t, detype_closed_glob cl c)
- | GLetIn (loc,id,b,e) ->
+ GProd(id,k,detype_closed_glob cl t, detype_closed_glob cl c)
+ | GLetIn (id,b,t,e) ->
let id = convert_name cl id in
- GLetIn(loc,id,detype_closed_glob cl b, detype_closed_glob cl e)
- | GLetTuple (loc,ids,(n,r),b,e) ->
+ GLetIn(id,detype_closed_glob cl b, Option.map (detype_closed_glob cl) t, detype_closed_glob cl e)
+ | GLetTuple (ids,(n,r),b,e) ->
let ids = List.map (convert_name cl) ids in
let n = convert_name cl n in
- GLetTuple (loc,ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e)
- | GCases (loc,sty,po,tml,eqns) ->
+ GLetTuple (ids,(n,r),detype_closed_glob cl b, detype_closed_glob cl e)
+ | GCases (sty,po,tml,eqns) ->
let (tml,eqns) =
Glob_ops.map_pattern_binders (fun na -> convert_name cl na) tml eqns
in
let (tml,eqns) =
Glob_ops.map_pattern (fun c -> detype_closed_glob cl c) tml eqns
in
- GCases(loc,sty,po,tml,eqns)
+ GCases(sty,po,tml,eqns)
| c ->
- Glob_ops.map_glob_constr (detype_closed_glob cl) c
+ DAst.get (Glob_ops.map_glob_constr (detype_closed_glob cl) cg)
+ ) cg
in
detype_closed_glob t.closure t.term
(**********************************************************************)
(* Module substitution: relies on detyping *)
-let rec subst_cases_pattern subst pat =
- match pat with
- | PatVar _ -> pat
- | PatCstr (loc,((kn,i),j),cpl,n) ->
+let rec subst_cases_pattern subst = DAst.map (function
+ | PatVar _ as pat -> pat
+ | PatCstr (((kn,i),j),cpl,n) as pat ->
let kn' = subst_mind subst kn
and cpl' = List.smartmap (subst_cases_pattern subst) cpl in
if kn' == kn && cpl' == cpl then pat else
- PatCstr (loc,((kn',i),j),cpl',n)
+ PatCstr (((kn',i),j),cpl',n)
+ )
let (f_subst_genarg, subst_genarg_hook) = Hook.make ()
-let rec subst_glob_constr subst raw =
- match raw with
- | GRef (loc,ref,u) ->
+let rec subst_glob_constr subst = DAst.map (function
+ | GRef (ref,u) as raw ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
- detype false [] (Global.env()) Evd.empty t
+ DAst.get (detype Now false Id.Set.empty (Global.env()) Evd.empty (EConstr.of_constr t))
- | GVar _ -> raw
- | GEvar _ -> raw
- | GPatVar _ -> raw
+ | GSort _
+ | GVar _
+ | GEvar _
+ | GPatVar _ as raw -> raw
- | GApp (loc,r,rl) ->
+ | GApp (r,rl) as raw ->
let r' = subst_glob_constr subst r
and rl' = List.smartmap (subst_glob_constr subst) rl in
if r' == r && rl' == rl then raw else
- GApp(loc,r',rl')
+ GApp(r',rl')
- | GLambda (loc,n,bk,r1,r2) ->
+ | GLambda (n,bk,r1,r2) as raw ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
- GLambda (loc,n,bk,r1',r2')
+ GLambda (n,bk,r1',r2')
- | GProd (loc,n,bk,r1,r2) ->
+ | GProd (n,bk,r1,r2) as raw ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
- GProd (loc,n,bk,r1',r2')
+ GProd (n,bk,r1',r2')
- | GLetIn (loc,n,r1,r2) ->
- let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
- if r1' == r1 && r2' == r2 then raw else
- GLetIn (loc,n,r1',r2')
+ | GLetIn (n,r1,t,r2) as raw ->
+ let r1' = subst_glob_constr subst r1 in
+ let r2' = subst_glob_constr subst r2 in
+ let t' = Option.smartmap (subst_glob_constr subst) t in
+ if r1' == r1 && t == t' && r2' == r2 then raw else
+ GLetIn (n,r1',t',r2')
- | GCases (loc,sty,rtno,rl,branches) ->
+ | GCases (sty,rtno,rl,branches) as raw ->
+ let open CAst in
let rtno' = Option.smartmap (subst_glob_constr subst) rtno
and rl' = List.smartmap (fun (a,x as y) ->
let a' = subst_glob_constr subst a in
let (n,topt) = x in
let topt' = Option.smartmap
- (fun (loc,(sp,i),y as t) ->
+ (fun ({loc;v=((sp,i),y)} as t) ->
let sp' = subst_mind subst sp in
- if sp == sp' then t else (loc,(sp',i),y)) topt in
+ if sp == sp' then t else CAst.(make ?loc ((sp',i),y))) topt in
if a == a' && topt == topt' then y else (a',(n,topt'))) rl
and branches' = List.smartmap
- (fun (loc,idl,cpl,r as branch) ->
+ (fun ({loc;v=(idl,cpl,r)} as branch) ->
let cpl' =
List.smartmap (subst_cases_pattern subst) cpl
and r' = subst_glob_constr subst r in
if cpl' == cpl && r' == r then branch else
- (loc,idl,cpl',r'))
+ CAst.(make ?loc (idl,cpl',r')))
branches
in
if rtno' == rtno && rl' == rl && branches' == branches then raw else
- GCases (loc,sty,rtno',rl',branches')
+ GCases (sty,rtno',rl',branches')
- | GLetTuple (loc,nal,(na,po),b,c) ->
+ | GLetTuple (nal,(na,po),b,c) as raw ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b' = subst_glob_constr subst b
and c' = subst_glob_constr subst c in
if po' == po && b' == b && c' == c then raw else
- GLetTuple (loc,nal,(na,po'),b',c')
+ GLetTuple (nal,(na,po'),b',c')
- | GIf (loc,c,(na,po),b1,b2) ->
+ | GIf (c,(na,po),b1,b2) as raw ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b1' = subst_glob_constr subst b1
and b2' = subst_glob_constr subst b2
and c' = subst_glob_constr subst c in
if c' == c && po' == po && b1' == b1 && b2' == b2 then raw else
- GIf (loc,c',(na,po'),b1',b2')
+ GIf (c',(na,po'),b1',b2')
- | GRec (loc,fix,ida,bl,ra1,ra2) ->
+ | GRec (fix,ida,bl,ra1,ra2) as raw ->
let ra1' = Array.smartmap (subst_glob_constr subst) ra1
and ra2' = Array.smartmap (subst_glob_constr subst) ra2 in
let bl' = Array.smartmap
@@ -877,11 +991,9 @@ let rec subst_glob_constr subst raw =
if ty'==ty && obd'==obd then dcl else (na,k,obd',ty')))
bl in
if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else
- GRec (loc,fix,ida,bl',ra1',ra2')
-
- | GSort _ -> raw
+ GRec (fix,ida,bl',ra1',ra2')
- | GHole (loc, knd, naming, solve) ->
+ | GHole (knd, naming, solve) as raw ->
let nknd = match knd with
| Evar_kinds.ImplicitArg (ref, i, b) ->
let nref, _ = subst_global subst ref in
@@ -890,25 +1002,25 @@ let rec subst_glob_constr subst raw =
in
let nsolve = Option.smartmap (Hook.get f_subst_genarg subst) solve in
if nsolve == solve && nknd == knd then raw
- else GHole (loc, nknd, naming, nsolve)
+ else GHole (nknd, naming, nsolve)
- | GCast (loc,r1,k) ->
+ | GCast (r1,k) as raw ->
let r1' = subst_glob_constr subst r1 in
let k' = Miscops.smartmap_cast_type (subst_glob_constr subst) k in
- if r1' == r1 && k' == k then raw else GCast (loc,r1',k')
+ if r1' == r1 && k' == k then raw else GCast (r1',k')
+ )
(* Utilities to transform kernel cases to simple pattern-matching problem *)
let simple_cases_matrix_of_branches ind brs =
List.map (fun (i,n,b) ->
let nal,c = it_destRLambda_or_LetIn_names n b in
- let mkPatVar na = PatVar (Loc.ghost,na) in
- let p = PatCstr (Loc.ghost,(ind,i+1),List.map mkPatVar nal,Anonymous) in
- let map name = try Some (Nameops.out_name name) with Failure _ -> None in
- let ids = List.map_filter map nal in
- (Loc.ghost,ids,[p],c))
+ let mkPatVar na = DAst.make @@ PatVar na in
+ let p = DAst.make @@ PatCstr ((ind,i+1),List.map mkPatVar nal,Anonymous) in
+ let ids = List.map_filter Nameops.Name.to_option nal in
+ CAst.make @@ (ids,[p],c))
brs
let return_type_of_predicate ind nrealargs_tags pred =
let nal,p = it_destRLambda_or_LetIn_names (nrealargs_tags@[false]) pred in
- (List.hd nal, Some (Loc.ghost, ind, List.tl nal)), Some p
+ (List.hd nal, Some (CAst.make (ind, List.tl nal))), Some p