summaryrefslogtreecommitdiff
path: root/plugins/ssr/ssrfun.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ssr/ssrfun.v')
-rw-r--r--plugins/ssr/ssrfun.v487
1 files changed, 248 insertions, 239 deletions
diff --git a/plugins/ssr/ssrfun.v b/plugins/ssr/ssrfun.v
index ac2c7824..4810c6e1 100644
--- a/plugins/ssr/ssrfun.v
+++ b/plugins/ssr/ssrfun.v
@@ -10,207 +10,210 @@
(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
+(** #<style> .doc { font-family: monospace; white-space: pre; } </style># **)
+
Require Import ssreflect.
-(******************************************************************************)
-(* This file contains the basic definitions and notations for working with *)
-(* functions. The definitions provide for: *)
-(* *)
-(* - Pair projections: *)
-(* p.1 == first element of a pair *)
-(* p.2 == second element of a pair *)
-(* These notations also apply to p : P /\ Q, via an and >-> pair coercion. *)
-(* *)
-(* - Simplifying functions, beta-reduced by /= and simpl: *)
-(* [fun : T => E] == constant function from type T that returns E *)
-(* [fun x => E] == unary function *)
-(* [fun x : T => E] == unary function with explicit domain type *)
-(* [fun x y => E] == binary function *)
-(* [fun x y : T => E] == binary function with common domain type *)
-(* [fun (x : T) y => E] \ *)
-(* [fun (x : xT) (y : yT) => E] | == binary function with (some) explicit, *)
-(* [fun x (y : T) => E] / independent domain types for each argument *)
-(* *)
-(* - Partial functions using option type: *)
-(* oapp f d ox == if ox is Some x returns f x, d otherwise *)
-(* odflt d ox == if ox is Some x returns x, d otherwise *)
-(* obind f ox == if ox is Some x returns f x, None otherwise *)
-(* omap f ox == if ox is Some x returns Some (f x), None otherwise *)
-(* *)
-(* - Singleton types: *)
-(* all_equal_to x0 == x0 is the only value in its type, so any such value *)
-(* can be rewritten to x0. *)
-(* *)
-(* - A generic wrapper type: *)
-(* wrapped T == the inductive type with values Wrap x for x : T. *)
-(* unwrap w == the projection of w : wrapped T on T. *)
-(* wrap x == the canonical injection of x : T into wrapped T; it is *)
-(* equivalent to Wrap x, but is declared as a (default) *)
-(* Canonical Structure, which lets the Coq HO unification *)
-(* automatically expand x into unwrap (wrap x). The delta *)
-(* reduction of wrap x to Wrap can be exploited to *)
-(* introduce controlled nondeterminism in Canonical *)
-(* Structure inference, as in the implementation of *)
-(* the mxdirect predicate in matrix.v. *)
-(* *)
-(* - Sigma types: *)
-(* tag w == the i of w : {i : I & T i}. *)
-(* tagged w == the T i component of w : {i : I & T i}. *)
-(* Tagged T x == the {i : I & T i} with component x : T i. *)
-(* tag2 w == the i of w : {i : I & T i & U i}. *)
-(* tagged2 w == the T i component of w : {i : I & T i & U i}. *)
-(* tagged2' w == the U i component of w : {i : I & T i & U i}. *)
-(* Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i. *)
-(* sval u == the x of u : {x : T | P x}. *)
-(* s2val u == the x of u : {x : T | P x & Q x}. *)
-(* The properties of sval u, s2val u are given by lemmas svalP, s2valP, and *)
-(* s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT. *)
-(* A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2 *)
-(* and pair, e.g., *)
-(* have /all_sig[f fP] (x : T): {y : U | P y} by ... *)
-(* yields an f : T -> U such that fP : forall x, P (f x). *)
-(* - Identity functions: *)
-(* id == NOTATION for the explicit identity function fun x => x. *)
-(* @id T == notation for the explicit identity at type T. *)
-(* idfun == an expression with a head constant, convertible to id; *)
-(* idfun x simplifies to x. *)
-(* @idfun T == the expression above, specialized to type T. *)
-(* phant_id x y == the function type phantom _ x -> phantom _ y. *)
-(* *** In addition to their casual use in functional programming, identity *)
-(* functions are often used to trigger static unification as part of the *)
-(* construction of dependent Records and Structures. For example, if we need *)
-(* a structure sT over a type T, we take as arguments T, sT, and a "dummy" *)
-(* function T -> sort sT: *)
-(* Definition foo T sT & T -> sort sT := ... *)
-(* We can avoid specifying sT directly by calling foo (@id T), or specify *)
-(* the call completely while still ensuring the consistency of T and sT, by *)
-(* calling @foo T sT idfun. The phant_id type allows us to extend this trick *)
-(* to non-Type canonical projections. It also allows us to sidestep *)
-(* dependent type constraints when building explicit records, e.g., given *)
-(* Record r := R {x; y : T(x)}. *)
-(* if we need to build an r from a given y0 while inferring some x0, such *)
-(* that y0 : T(x0), we pose *)
-(* Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'. *)
-(* Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking *)
-(* the dependent type constraint y0 : T(x0). *)
-(* *)
-(* - Extensional equality for functions and relations (i.e. functions of two *)
-(* arguments): *)
-(* f1 =1 f2 == f1 x is equal to f2 x for all x. *)
-(* f1 =1 f2 :> A == ... and f2 is explicitly typed. *)
-(* f1 =2 f2 == f1 x y is equal to f2 x y for all x y. *)
-(* f1 =2 f2 :> A == ... and f2 is explicitly typed. *)
-(* *)
-(* - Composition for total and partial functions: *)
-(* f^~ y == function f with second argument specialised to y, *)
-(* i.e., fun x => f x y *)
-(* CAVEAT: conditional (non-maximal) implicit arguments *)
-(* of f are NOT inserted in this context *)
-(* @^~ x == application at x, i.e., fun f => f x *)
-(* [eta f] == the explicit eta-expansion of f, i.e., fun x => f x *)
-(* CAVEAT: conditional (non-maximal) implicit arguments *)
-(* of f are NOT inserted in this context. *)
-(* fun=> v := the constant function fun _ => v. *)
-(* f1 \o f2 == composition of f1 and f2. *)
-(* Note: (f1 \o f2) x simplifies to f1 (f2 x). *)
-(* f1 \; f2 == categorical composition of f1 and f2. This expands to *)
-(* to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x). *)
-(* pcomp f1 f2 == composition of partial functions f1 and f2. *)
-(* *)
-(* *)
-(* - Properties of functions: *)
-(* injective f <-> f is injective. *)
-(* cancel f g <-> g is a left inverse of f / f is a right inverse of g. *)
-(* pcancel f g <-> g is a left inverse of f where g is partial. *)
-(* ocancel f g <-> g is a left inverse of f where f is partial. *)
-(* bijective f <-> f is bijective (has a left and right inverse). *)
-(* involutive f <-> f is involutive. *)
-(* *)
-(* - Properties for operations. *)
-(* left_id e op <-> e is a left identity for op (e op x = x). *)
-(* right_id e op <-> e is a right identity for op (x op e = x). *)
-(* left_inverse e inv op <-> inv is a left inverse for op wrt identity e, *)
-(* i.e., (inv x) op x = e. *)
-(* right_inverse e inv op <-> inv is a right inverse for op wrt identity e *)
-(* i.e., x op (i x) = e. *)
-(* self_inverse e op <-> each x is its own op-inverse (x op x = e). *)
-(* idempotent op <-> op is idempotent for op (x op x = x). *)
-(* associative op <-> op is associative, i.e., *)
-(* x op (y op z) = (x op y) op z. *)
-(* commutative op <-> op is commutative (x op y = y op x). *)
-(* left_commutative op <-> op is left commutative, i.e., *)
-(* x op (y op z) = y op (x op z). *)
-(* right_commutative op <-> op is right commutative, i.e., *)
-(* (x op y) op z = (x op z) op y. *)
-(* left_zero z op <-> z is a left zero for op (z op x = z). *)
-(* right_zero z op <-> z is a right zero for op (x op z = z). *)
-(* left_distributive op1 op2 <-> op1 distributes over op2 to the left: *)
-(* (x op2 y) op1 z = (x op1 z) op2 (y op1 z). *)
-(* right_distributive op1 op2 <-> op distributes over add to the right: *)
-(* x op1 (y op2 z) = (x op1 z) op2 (x op1 z). *)
-(* interchange op1 op2 <-> op1 and op2 satisfy an interchange law: *)
-(* (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t). *)
-(* Note that interchange op op is a commutativity property. *)
-(* left_injective op <-> op is injective in its left argument: *)
-(* x op y = z op y -> x = z. *)
-(* right_injective op <-> op is injective in its right argument: *)
-(* x op y = x op z -> y = z. *)
-(* left_loop inv op <-> op, inv obey the inverse loop left axiom: *)
-(* (inv x) op (x op y) = y for all x, y, i.e., *)
-(* op (inv x) is always a left inverse of op x *)
-(* rev_left_loop inv op <-> op, inv obey the inverse loop reverse left *)
-(* axiom: x op ((inv x) op y) = y, for all x, y. *)
-(* right_loop inv op <-> op, inv obey the inverse loop right axiom: *)
-(* (x op y) op (inv y) = x for all x, y. *)
-(* rev_right_loop inv op <-> op, inv obey the inverse loop reverse right *)
-(* axiom: (x op y) op (inv y) = x for all x, y. *)
-(* Note that familiar "cancellation" identities like x + y - y = x or *)
-(* x - y + y = x are respectively instances of right_loop and rev_right_loop *)
-(* The corresponding lemmas will use the K and NK/VK suffixes, respectively. *)
-(* *)
-(* - Morphisms for functions and relations: *)
-(* {morph f : x / a >-> r} <-> f is a morphism with respect to functions *)
-(* (fun x => a) and (fun x => r); if r == R[x], *)
-(* this states that f a = R[f x] for all x. *)
-(* {morph f : x / a} <-> f is a morphism with respect to the *)
-(* function expression (fun x => a). This is *)
-(* shorthand for {morph f : x / a >-> a}; note *)
-(* that the two instances of a are often *)
-(* interpreted at different types. *)
-(* {morph f : x y / a >-> r} <-> f is a morphism with respect to functions *)
-(* (fun x y => a) and (fun x y => r). *)
-(* {morph f : x y / a} <-> f is a morphism with respect to the *)
-(* function expression (fun x y => a). *)
-(* {homo f : x / a >-> r} <-> f is a homomorphism with respect to the *)
-(* predicates (fun x => a) and (fun x => r); *)
-(* if r == R[x], this states that a -> R[f x] *)
-(* for all x. *)
-(* {homo f : x / a} <-> f is a homomorphism with respect to the *)
-(* predicate expression (fun x => a). *)
-(* {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the *)
-(* relations (fun x y => a) and (fun x y => r). *)
-(* {homo f : x y / a} <-> f is a homomorphism with respect to the *)
-(* relation expression (fun x y => a). *)
-(* {mono f : x / a >-> r} <-> f is monotone with respect to projectors *)
-(* (fun x => a) and (fun x => r); if r == R[x], *)
-(* this states that R[f x] = a for all x. *)
-(* {mono f : x / a} <-> f is monotone with respect to the projector *)
-(* expression (fun x => a). *)
-(* {mono f : x y / a >-> r} <-> f is monotone with respect to relators *)
-(* (fun x y => a) and (fun x y => r). *)
-(* {mono f : x y / a} <-> f is monotone with respect to the relator *)
-(* expression (fun x y => a). *)
-(* *)
-(* The file also contains some basic lemmas for the above concepts. *)
-(* Lemmas relative to cancellation laws use some abbreviated suffixes: *)
-(* K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x). *)
-(* LR - a lemma moving an operation from the left hand side of a relation to *)
-(* the right hand side, like canLR: cancel g f -> x = g y -> f x = y. *)
-(* RL - a lemma moving an operation from the right to the left, e.g., canRL. *)
-(* Beware that the LR and RL orientations refer to an "apply" (back chaining) *)
-(* usage; when using the same lemmas with "have" or "move" (forward chaining) *)
-(* the directions will be reversed!. *)
-(******************************************************************************)
+
+(**
+ This file contains the basic definitions and notations for working with
+ functions. The definitions provide for:
+
+ - Pair projections:
+ p.1 == first element of a pair
+ p.2 == second element of a pair
+ These notations also apply to p : P /\ Q, via an and >-> pair coercion.
+
+ - Simplifying functions, beta-reduced by /= and simpl:
+ #[#fun : T => E#]# == constant function from type T that returns E
+ #[#fun x => E#]# == unary function
+ #[#fun x : T => E#]# == unary function with explicit domain type
+ #[#fun x y => E#]# == binary function
+ #[#fun x y : T => E#]# == binary function with common domain type
+ #[#fun (x : T) y => E#]# \
+ #[#fun (x : xT) (y : yT) => E#]# | == binary function with (some) explicit,
+ #[#fun x (y : T) => E#]# / independent domain types for each argument
+
+ - Partial functions using option type:
+ oapp f d ox == if ox is Some x returns f x, d otherwise
+ odflt d ox == if ox is Some x returns x, d otherwise
+ obind f ox == if ox is Some x returns f x, None otherwise
+ omap f ox == if ox is Some x returns Some (f x), None otherwise
+
+ - Singleton types:
+ all_equal_to x0 == x0 is the only value in its type, so any such value
+ can be rewritten to x0.
+
+ - A generic wrapper type:
+ wrapped T == the inductive type with values Wrap x for x : T.
+ unwrap w == the projection of w : wrapped T on T.
+ wrap x == the canonical injection of x : T into wrapped T; it is
+ equivalent to Wrap x, but is declared as a (default)
+ Canonical Structure, which lets the Coq HO unification
+ automatically expand x into unwrap (wrap x). The delta
+ reduction of wrap x to Wrap can be exploited to
+ introduce controlled nondeterminism in Canonical
+ Structure inference, as in the implementation of
+ the mxdirect predicate in matrix.v.
+
+ - Sigma types:
+ tag w == the i of w : {i : I & T i}.
+ tagged w == the T i component of w : {i : I & T i}.
+ Tagged T x == the {i : I & T i} with component x : T i.
+ tag2 w == the i of w : {i : I & T i & U i}.
+ tagged2 w == the T i component of w : {i : I & T i & U i}.
+ tagged2' w == the U i component of w : {i : I & T i & U i}.
+ Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i.
+ sval u == the x of u : {x : T | P x}.
+ s2val u == the x of u : {x : T | P x & Q x}.
+ The properties of sval u, s2val u are given by lemmas svalP, s2valP, and
+ s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT.
+ A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2
+ and pair, e.g.,
+ have /all_sig#[#f fP#]# (x : T): {y : U | P y} by ...
+ yields an f : T -> U such that fP : forall x, P (f x).
+ - Identity functions:
+ id == NOTATION for the explicit identity function fun x => x.
+ @id T == notation for the explicit identity at type T.
+ idfun == an expression with a head constant, convertible to id;
+ idfun x simplifies to x.
+ @idfun T == the expression above, specialized to type T.
+ phant_id x y == the function type phantom _ x -> phantom _ y.
+ *** In addition to their casual use in functional programming, identity
+ functions are often used to trigger static unification as part of the
+ construction of dependent Records and Structures. For example, if we need
+ a structure sT over a type T, we take as arguments T, sT, and a "dummy"
+ function T -> sort sT:
+ Definition foo T sT & T -> sort sT := ...
+ We can avoid specifying sT directly by calling foo (@id T), or specify
+ the call completely while still ensuring the consistency of T and sT, by
+ calling @foo T sT idfun. The phant_id type allows us to extend this trick
+ to non-Type canonical projections. It also allows us to sidestep
+ dependent type constraints when building explicit records, e.g., given
+ Record r := R {x; y : T(x)}.
+ if we need to build an r from a given y0 while inferring some x0, such
+ that y0 : T(x0), we pose
+ Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'.
+ Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking
+ the dependent type constraint y0 : T(x0).
+
+ - Extensional equality for functions and relations (i.e. functions of two
+ arguments):
+ f1 =1 f2 == f1 x is equal to f2 x for all x.
+ f1 =1 f2 :> A == ... and f2 is explicitly typed.
+ f1 =2 f2 == f1 x y is equal to f2 x y for all x y.
+ f1 =2 f2 :> A == ... and f2 is explicitly typed.
+
+ - Composition for total and partial functions:
+ f^~ y == function f with second argument specialised to y,
+ i.e., fun x => f x y
+ CAVEAT: conditional (non-maximal) implicit arguments
+ of f are NOT inserted in this context
+ @^~ x == application at x, i.e., fun f => f x
+ #[#eta f#]# == the explicit eta-expansion of f, i.e., fun x => f x
+ CAVEAT: conditional (non-maximal) implicit arguments
+ of f are NOT inserted in this context.
+ fun=> v := the constant function fun _ => v.
+ f1 \o f2 == composition of f1 and f2.
+ Note: (f1 \o f2) x simplifies to f1 (f2 x).
+ f1 \; f2 == categorical composition of f1 and f2. This expands to
+ to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x).
+ pcomp f1 f2 == composition of partial functions f1 and f2.
+
+
+ - Properties of functions:
+ injective f <-> f is injective.
+ cancel f g <-> g is a left inverse of f / f is a right inverse of g.
+ pcancel f g <-> g is a left inverse of f where g is partial.
+ ocancel f g <-> g is a left inverse of f where f is partial.
+ bijective f <-> f is bijective (has a left and right inverse).
+ involutive f <-> f is involutive.
+
+ - Properties for operations.
+ left_id e op <-> e is a left identity for op (e op x = x).
+ right_id e op <-> e is a right identity for op (x op e = x).
+ left_inverse e inv op <-> inv is a left inverse for op wrt identity e,
+ i.e., (inv x) op x = e.
+ right_inverse e inv op <-> inv is a right inverse for op wrt identity e
+ i.e., x op (i x) = e.
+ self_inverse e op <-> each x is its own op-inverse (x op x = e).
+ idempotent op <-> op is idempotent for op (x op x = x).
+ associative op <-> op is associative, i.e.,
+ x op (y op z) = (x op y) op z.
+ commutative op <-> op is commutative (x op y = y op x).
+ left_commutative op <-> op is left commutative, i.e.,
+ x op (y op z) = y op (x op z).
+ right_commutative op <-> op is right commutative, i.e.,
+ (x op y) op z = (x op z) op y.
+ left_zero z op <-> z is a left zero for op (z op x = z).
+ right_zero z op <-> z is a right zero for op (x op z = z).
+ left_distributive op1 op2 <-> op1 distributes over op2 to the left:
+ (x op2 y) op1 z = (x op1 z) op2 (y op1 z).
+ right_distributive op1 op2 <-> op distributes over add to the right:
+ x op1 (y op2 z) = (x op1 z) op2 (x op1 z).
+ interchange op1 op2 <-> op1 and op2 satisfy an interchange law:
+ (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t).
+ Note that interchange op op is a commutativity property.
+ left_injective op <-> op is injective in its left argument:
+ x op y = z op y -> x = z.
+ right_injective op <-> op is injective in its right argument:
+ x op y = x op z -> y = z.
+ left_loop inv op <-> op, inv obey the inverse loop left axiom:
+ (inv x) op (x op y) = y for all x, y, i.e.,
+ op (inv x) is always a left inverse of op x
+ rev_left_loop inv op <-> op, inv obey the inverse loop reverse left
+ axiom: x op ((inv x) op y) = y, for all x, y.
+ right_loop inv op <-> op, inv obey the inverse loop right axiom:
+ (x op y) op (inv y) = x for all x, y.
+ rev_right_loop inv op <-> op, inv obey the inverse loop reverse right
+ axiom: (x op y) op (inv y) = x for all x, y.
+ Note that familiar "cancellation" identities like x + y - y = x or
+ x - y + y = x are respectively instances of right_loop and rev_right_loop
+ The corresponding lemmas will use the K and NK/VK suffixes, respectively.
+
+ - Morphisms for functions and relations:
+ {morph f : x / a >-> r} <-> f is a morphism with respect to functions
+ (fun x => a) and (fun x => r); if r == R#[#x#]#,
+ this states that f a = R#[#f x#]# for all x.
+ {morph f : x / a} <-> f is a morphism with respect to the
+ function expression (fun x => a). This is
+ shorthand for {morph f : x / a >-> a}; note
+ that the two instances of a are often
+ interpreted at different types.
+ {morph f : x y / a >-> r} <-> f is a morphism with respect to functions
+ (fun x y => a) and (fun x y => r).
+ {morph f : x y / a} <-> f is a morphism with respect to the
+ function expression (fun x y => a).
+ {homo f : x / a >-> r} <-> f is a homomorphism with respect to the
+ predicates (fun x => a) and (fun x => r);
+ if r == R#[#x#]#, this states that a -> R#[#f x#]#
+ for all x.
+ {homo f : x / a} <-> f is a homomorphism with respect to the
+ predicate expression (fun x => a).
+ {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the
+ relations (fun x y => a) and (fun x y => r).
+ {homo f : x y / a} <-> f is a homomorphism with respect to the
+ relation expression (fun x y => a).
+ {mono f : x / a >-> r} <-> f is monotone with respect to projectors
+ (fun x => a) and (fun x => r); if r == R#[#x#]#,
+ this states that R#[#f x#]# = a for all x.
+ {mono f : x / a} <-> f is monotone with respect to the projector
+ expression (fun x => a).
+ {mono f : x y / a >-> r} <-> f is monotone with respect to relators
+ (fun x y => a) and (fun x y => r).
+ {mono f : x y / a} <-> f is monotone with respect to the relator
+ expression (fun x y => a).
+
+ The file also contains some basic lemmas for the above concepts.
+ Lemmas relative to cancellation laws use some abbreviated suffixes:
+ K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x).
+ LR - a lemma moving an operation from the left hand side of a relation to
+ the right hand side, like canLR: cancel g f -> x = g y -> f x = y.
+ RL - a lemma moving an operation from the right to the left, e.g., canRL.
+ Beware that the LR and RL orientations refer to an "apply" (back chaining)
+ usage; when using the same lemmas with "have" or "move" (forward chaining)
+ the directions will be reversed!. **)
+
Set Implicit Arguments.
Unset Strict Implicit.
@@ -219,7 +222,7 @@ Unset Printing Implicit Defensive.
Delimit Scope fun_scope with FUN.
Open Scope fun_scope.
-(* Notations for argument transpose *)
+(** Notations for argument transpose **)
Notation "f ^~ y" := (fun x => f x y)
(at level 10, y at level 8, no associativity, format "f ^~ y") : fun_scope.
Notation "@^~ x" := (fun f => f x)
@@ -228,7 +231,7 @@ Notation "@^~ x" := (fun f => f x)
Delimit Scope pair_scope with PAIR.
Open Scope pair_scope.
-(* Notations for pair/conjunction projections *)
+(** Notations for pair/conjunction projections **)
Notation "p .1" := (fst p)
(at level 2, left associativity, format "p .1") : pair_scope.
Notation "p .2" := (snd p)
@@ -239,8 +242,9 @@ Coercion pair_of_and P Q (PandQ : P /\ Q) := (proj1 PandQ, proj2 PandQ).
Definition all_pair I T U (w : forall i : I, T i * U i) :=
(fun i => (w i).1, fun i => (w i).2).
-(* Complements on the option type constructor, used below to *)
-(* encode partial functions. *)
+(**
+ Complements on the option type constructor, used below to
+ encode partial functions. **)
Module Option.
@@ -260,7 +264,7 @@ Notation obind := Option.bind.
Notation omap := Option.map.
Notation some := (@Some _) (only parsing).
-(* Shorthand for some basic equality lemmas. *)
+(** Shorthand for some basic equality lemmas. **)
Notation erefl := refl_equal.
Notation ecast i T e x := (let: erefl in _ = i := e return T in x).
@@ -269,31 +273,32 @@ Definition nesym := sym_not_eq.
Definition etrans := trans_eq.
Definition congr1 := f_equal.
Definition congr2 := f_equal2.
-(* Force at least one implicit when used as a view. *)
+(** Force at least one implicit when used as a view. **)
Prenex Implicits esym nesym.
-(* A predicate for singleton types. *)
+(** A predicate for singleton types. **)
Definition all_equal_to T (x0 : T) := forall x, unkeyed x = x0.
Lemma unitE : all_equal_to tt. Proof. by case. Qed.
-(* A generic wrapper type *)
+(** A generic wrapper type **)
Structure wrapped T := Wrap {unwrap : T}.
Canonical wrap T x := @Wrap T x.
Prenex Implicits unwrap wrap Wrap.
-(* Syntax for defining auxiliary recursive function. *)
-(* Usage: *)
-(* Section FooDefinition. *)
-(* Variables (g1 : T1) (g2 : T2). (globals) *)
-(* Fixoint foo_auxiliary (a3 : T3) ... := *)
-(* body, using [rec e3, ...] for recursive calls *)
-(* where "[ 'rec' a3 , a4 , ... ]" := foo_auxiliary. *)
-(* Definition foo x y .. := [rec e1, ...]. *)
-(* + proofs about foo *)
-(* End FooDefinition. *)
+(**
+ Syntax for defining auxiliary recursive function.
+ Usage:
+ Section FooDefinition.
+ Variables (g1 : T1) (g2 : T2). (globals)
+ Fixoint foo_auxiliary (a3 : T3) ... :=
+ body, using #[#rec e3, ... #]# for recursive calls
+ where " #[# 'rec' a3 , a4 , ... #]#" := foo_auxiliary.
+ Definition foo x y .. := #[#rec e1, ... #]#.
+ + proofs about foo
+ End FooDefinition. **)
Reserved Notation "[ 'rec' a0 ]"
(at level 0, format "[ 'rec' a0 ]").
@@ -319,14 +324,15 @@ Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]"
(at level 0,
format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]").
-(* Definitions and notation for explicit functions with simplification, *)
-(* i.e., which simpl and /= beta expand (this is complementary to nosimpl). *)
+(**
+ Definitions and notation for explicit functions with simplification,
+ i.e., which simpl and /= beta expand (this is complementary to nosimpl). **)
Section SimplFun.
Variables aT rT : Type.
-CoInductive simpl_fun := SimplFun of aT -> rT.
+Variant simpl_fun := SimplFun of aT -> rT.
Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x.
@@ -362,11 +368,12 @@ Notation "[ 'fun' ( x : xT ) ( y : yT ) => E ]" :=
(fun x : xT => [fun y : yT => E])
(at level 0, x ident, y ident, only parsing) : fun_scope.
-(* For delta functions in eqtype.v. *)
+(** For delta functions in eqtype.v. **)
Definition SimplFunDelta aT rT (f : aT -> aT -> rT) := [fun z => f z z].
-(* Extensional equality, for unary and binary functions, including syntactic *)
-(* sugar. *)
+(**
+ Extensional equality, for unary and binary functions, including syntactic
+ sugar. **)
Section ExtensionalEquality.
@@ -439,7 +446,7 @@ Notation "@ 'idfun' T " := (@id_head T explicit_id_key)
Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2.
-(* Strong sigma types. *)
+(** Strong sigma types. **)
Section Tag.
@@ -473,9 +480,9 @@ Lemma all_tag2 I T U V :
{f : forall i, T i & forall i, U i (f i) & forall i, V i (f i)}.
Proof. by case/all_tag=> f /all_pair[]; exists f. Qed.
-(* Refinement types. *)
+(** Refinement types. **)
-(* Prenex Implicits and renaming. *)
+(** Prenex Implicits and renaming. **)
Notation sval := (@proj1_sig _ _).
Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
@@ -514,16 +521,16 @@ Section Morphism.
Variables (aT rT sT : Type) (f : aT -> rT).
-(* Morphism property for unary and binary functions *)
+(** Morphism property for unary and binary functions **)
Definition morphism_1 aF rF := forall x, f (aF x) = rF (f x).
Definition morphism_2 aOp rOp := forall x y, f (aOp x y) = rOp (f x) (f y).
-(* Homomorphism property for unary and binary relations *)
+(** Homomorphism property for unary and binary relations **)
Definition homomorphism_1 (aP rP : _ -> Prop) := forall x, aP x -> rP (f x).
Definition homomorphism_2 (aR rR : _ -> _ -> Prop) :=
forall x y, aR x y -> rR (f x) (f y).
-(* Stability property for unary and binary relations *)
+(** Stability property for unary and binary relations **)
Definition monomorphism_1 (aP rP : _ -> sT) := forall x, rP (f x) = aP x.
Definition monomorphism_2 (aR rR : _ -> _ -> sT) :=
forall x y, rR (f x) (f y) = aR x y.
@@ -600,16 +607,18 @@ Notation "{ 'mono' f : x y /~ a }" :=
(at level 0, f at level 99, x ident, y ident,
format "{ 'mono' f : x y /~ a }") : type_scope.
-(* In an intuitionistic setting, we have two degrees of injectivity. The *)
-(* weaker one gives only simplification, and the strong one provides a left *)
-(* inverse (we show in `fintype' that they coincide for finite types). *)
-(* We also define an intermediate version where the left inverse is only a *)
-(* partial function. *)
+(**
+ In an intuitionistic setting, we have two degrees of injectivity. The
+ weaker one gives only simplification, and the strong one provides a left
+ inverse (we show in `fintype' that they coincide for finite types).
+ We also define an intermediate version where the left inverse is only a
+ partial function. **)
Section Injections.
-(* rT must come first so we can use @ to mitigate the Coq 1st order *)
-(* unification bug (e..g., Coq can't infer rT from a "cancel" lemma). *)
+(**
+ rT must come first so we can use @ to mitigate the Coq 1st order
+ unification bug (e..g., Coq can't infer rT from a "cancel" lemma). **)
Variables (rT aT : Type) (f : aT -> rT).
Definition injective := forall x1 x2, f x1 = f x2 -> x1 = x2.
@@ -639,10 +648,10 @@ End Injections.
Lemma Some_inj {T} : injective (@Some T). Proof. by move=> x y []. Qed.
-(* Force implicits to use as a view. *)
+(** Force implicits to use as a view. **)
Prenex Implicits Some_inj.
-(* cancellation lemmas for dependent type casts. *)
+(** cancellation lemmas for dependent type casts. **)
Lemma esymK T x y : cancel (@esym T x y) (@esym T y x).
Proof. by case: y /. Qed.
@@ -684,7 +693,7 @@ Section Bijections.
Variables (A B : Type) (f : B -> A).
-CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.
+Variant bijective : Prop := Bijective g of cancel f g & cancel g f.
Hypothesis bijf : bijective.