summaryrefslogtreecommitdiff
path: root/plugins/ssr/ssrfun.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/ssr/ssrfun.v')
-rw-r--r--plugins/ssr/ssrfun.v796
1 files changed, 796 insertions, 0 deletions
diff --git a/plugins/ssr/ssrfun.v b/plugins/ssr/ssrfun.v
new file mode 100644
index 00000000..ac2c7824
--- /dev/null
+++ b/plugins/ssr/ssrfun.v
@@ -0,0 +1,796 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
+
+Require Import ssreflect.
+
+(******************************************************************************)
+(* This file contains the basic definitions and notations for working with *)
+(* functions. The definitions provide for: *)
+(* *)
+(* - Pair projections: *)
+(* p.1 == first element of a pair *)
+(* p.2 == second element of a pair *)
+(* These notations also apply to p : P /\ Q, via an and >-> pair coercion. *)
+(* *)
+(* - Simplifying functions, beta-reduced by /= and simpl: *)
+(* [fun : T => E] == constant function from type T that returns E *)
+(* [fun x => E] == unary function *)
+(* [fun x : T => E] == unary function with explicit domain type *)
+(* [fun x y => E] == binary function *)
+(* [fun x y : T => E] == binary function with common domain type *)
+(* [fun (x : T) y => E] \ *)
+(* [fun (x : xT) (y : yT) => E] | == binary function with (some) explicit, *)
+(* [fun x (y : T) => E] / independent domain types for each argument *)
+(* *)
+(* - Partial functions using option type: *)
+(* oapp f d ox == if ox is Some x returns f x, d otherwise *)
+(* odflt d ox == if ox is Some x returns x, d otherwise *)
+(* obind f ox == if ox is Some x returns f x, None otherwise *)
+(* omap f ox == if ox is Some x returns Some (f x), None otherwise *)
+(* *)
+(* - Singleton types: *)
+(* all_equal_to x0 == x0 is the only value in its type, so any such value *)
+(* can be rewritten to x0. *)
+(* *)
+(* - A generic wrapper type: *)
+(* wrapped T == the inductive type with values Wrap x for x : T. *)
+(* unwrap w == the projection of w : wrapped T on T. *)
+(* wrap x == the canonical injection of x : T into wrapped T; it is *)
+(* equivalent to Wrap x, but is declared as a (default) *)
+(* Canonical Structure, which lets the Coq HO unification *)
+(* automatically expand x into unwrap (wrap x). The delta *)
+(* reduction of wrap x to Wrap can be exploited to *)
+(* introduce controlled nondeterminism in Canonical *)
+(* Structure inference, as in the implementation of *)
+(* the mxdirect predicate in matrix.v. *)
+(* *)
+(* - Sigma types: *)
+(* tag w == the i of w : {i : I & T i}. *)
+(* tagged w == the T i component of w : {i : I & T i}. *)
+(* Tagged T x == the {i : I & T i} with component x : T i. *)
+(* tag2 w == the i of w : {i : I & T i & U i}. *)
+(* tagged2 w == the T i component of w : {i : I & T i & U i}. *)
+(* tagged2' w == the U i component of w : {i : I & T i & U i}. *)
+(* Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i. *)
+(* sval u == the x of u : {x : T | P x}. *)
+(* s2val u == the x of u : {x : T | P x & Q x}. *)
+(* The properties of sval u, s2val u are given by lemmas svalP, s2valP, and *)
+(* s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT. *)
+(* A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2 *)
+(* and pair, e.g., *)
+(* have /all_sig[f fP] (x : T): {y : U | P y} by ... *)
+(* yields an f : T -> U such that fP : forall x, P (f x). *)
+(* - Identity functions: *)
+(* id == NOTATION for the explicit identity function fun x => x. *)
+(* @id T == notation for the explicit identity at type T. *)
+(* idfun == an expression with a head constant, convertible to id; *)
+(* idfun x simplifies to x. *)
+(* @idfun T == the expression above, specialized to type T. *)
+(* phant_id x y == the function type phantom _ x -> phantom _ y. *)
+(* *** In addition to their casual use in functional programming, identity *)
+(* functions are often used to trigger static unification as part of the *)
+(* construction of dependent Records and Structures. For example, if we need *)
+(* a structure sT over a type T, we take as arguments T, sT, and a "dummy" *)
+(* function T -> sort sT: *)
+(* Definition foo T sT & T -> sort sT := ... *)
+(* We can avoid specifying sT directly by calling foo (@id T), or specify *)
+(* the call completely while still ensuring the consistency of T and sT, by *)
+(* calling @foo T sT idfun. The phant_id type allows us to extend this trick *)
+(* to non-Type canonical projections. It also allows us to sidestep *)
+(* dependent type constraints when building explicit records, e.g., given *)
+(* Record r := R {x; y : T(x)}. *)
+(* if we need to build an r from a given y0 while inferring some x0, such *)
+(* that y0 : T(x0), we pose *)
+(* Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'. *)
+(* Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking *)
+(* the dependent type constraint y0 : T(x0). *)
+(* *)
+(* - Extensional equality for functions and relations (i.e. functions of two *)
+(* arguments): *)
+(* f1 =1 f2 == f1 x is equal to f2 x for all x. *)
+(* f1 =1 f2 :> A == ... and f2 is explicitly typed. *)
+(* f1 =2 f2 == f1 x y is equal to f2 x y for all x y. *)
+(* f1 =2 f2 :> A == ... and f2 is explicitly typed. *)
+(* *)
+(* - Composition for total and partial functions: *)
+(* f^~ y == function f with second argument specialised to y, *)
+(* i.e., fun x => f x y *)
+(* CAVEAT: conditional (non-maximal) implicit arguments *)
+(* of f are NOT inserted in this context *)
+(* @^~ x == application at x, i.e., fun f => f x *)
+(* [eta f] == the explicit eta-expansion of f, i.e., fun x => f x *)
+(* CAVEAT: conditional (non-maximal) implicit arguments *)
+(* of f are NOT inserted in this context. *)
+(* fun=> v := the constant function fun _ => v. *)
+(* f1 \o f2 == composition of f1 and f2. *)
+(* Note: (f1 \o f2) x simplifies to f1 (f2 x). *)
+(* f1 \; f2 == categorical composition of f1 and f2. This expands to *)
+(* to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x). *)
+(* pcomp f1 f2 == composition of partial functions f1 and f2. *)
+(* *)
+(* *)
+(* - Properties of functions: *)
+(* injective f <-> f is injective. *)
+(* cancel f g <-> g is a left inverse of f / f is a right inverse of g. *)
+(* pcancel f g <-> g is a left inverse of f where g is partial. *)
+(* ocancel f g <-> g is a left inverse of f where f is partial. *)
+(* bijective f <-> f is bijective (has a left and right inverse). *)
+(* involutive f <-> f is involutive. *)
+(* *)
+(* - Properties for operations. *)
+(* left_id e op <-> e is a left identity for op (e op x = x). *)
+(* right_id e op <-> e is a right identity for op (x op e = x). *)
+(* left_inverse e inv op <-> inv is a left inverse for op wrt identity e, *)
+(* i.e., (inv x) op x = e. *)
+(* right_inverse e inv op <-> inv is a right inverse for op wrt identity e *)
+(* i.e., x op (i x) = e. *)
+(* self_inverse e op <-> each x is its own op-inverse (x op x = e). *)
+(* idempotent op <-> op is idempotent for op (x op x = x). *)
+(* associative op <-> op is associative, i.e., *)
+(* x op (y op z) = (x op y) op z. *)
+(* commutative op <-> op is commutative (x op y = y op x). *)
+(* left_commutative op <-> op is left commutative, i.e., *)
+(* x op (y op z) = y op (x op z). *)
+(* right_commutative op <-> op is right commutative, i.e., *)
+(* (x op y) op z = (x op z) op y. *)
+(* left_zero z op <-> z is a left zero for op (z op x = z). *)
+(* right_zero z op <-> z is a right zero for op (x op z = z). *)
+(* left_distributive op1 op2 <-> op1 distributes over op2 to the left: *)
+(* (x op2 y) op1 z = (x op1 z) op2 (y op1 z). *)
+(* right_distributive op1 op2 <-> op distributes over add to the right: *)
+(* x op1 (y op2 z) = (x op1 z) op2 (x op1 z). *)
+(* interchange op1 op2 <-> op1 and op2 satisfy an interchange law: *)
+(* (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t). *)
+(* Note that interchange op op is a commutativity property. *)
+(* left_injective op <-> op is injective in its left argument: *)
+(* x op y = z op y -> x = z. *)
+(* right_injective op <-> op is injective in its right argument: *)
+(* x op y = x op z -> y = z. *)
+(* left_loop inv op <-> op, inv obey the inverse loop left axiom: *)
+(* (inv x) op (x op y) = y for all x, y, i.e., *)
+(* op (inv x) is always a left inverse of op x *)
+(* rev_left_loop inv op <-> op, inv obey the inverse loop reverse left *)
+(* axiom: x op ((inv x) op y) = y, for all x, y. *)
+(* right_loop inv op <-> op, inv obey the inverse loop right axiom: *)
+(* (x op y) op (inv y) = x for all x, y. *)
+(* rev_right_loop inv op <-> op, inv obey the inverse loop reverse right *)
+(* axiom: (x op y) op (inv y) = x for all x, y. *)
+(* Note that familiar "cancellation" identities like x + y - y = x or *)
+(* x - y + y = x are respectively instances of right_loop and rev_right_loop *)
+(* The corresponding lemmas will use the K and NK/VK suffixes, respectively. *)
+(* *)
+(* - Morphisms for functions and relations: *)
+(* {morph f : x / a >-> r} <-> f is a morphism with respect to functions *)
+(* (fun x => a) and (fun x => r); if r == R[x], *)
+(* this states that f a = R[f x] for all x. *)
+(* {morph f : x / a} <-> f is a morphism with respect to the *)
+(* function expression (fun x => a). This is *)
+(* shorthand for {morph f : x / a >-> a}; note *)
+(* that the two instances of a are often *)
+(* interpreted at different types. *)
+(* {morph f : x y / a >-> r} <-> f is a morphism with respect to functions *)
+(* (fun x y => a) and (fun x y => r). *)
+(* {morph f : x y / a} <-> f is a morphism with respect to the *)
+(* function expression (fun x y => a). *)
+(* {homo f : x / a >-> r} <-> f is a homomorphism with respect to the *)
+(* predicates (fun x => a) and (fun x => r); *)
+(* if r == R[x], this states that a -> R[f x] *)
+(* for all x. *)
+(* {homo f : x / a} <-> f is a homomorphism with respect to the *)
+(* predicate expression (fun x => a). *)
+(* {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the *)
+(* relations (fun x y => a) and (fun x y => r). *)
+(* {homo f : x y / a} <-> f is a homomorphism with respect to the *)
+(* relation expression (fun x y => a). *)
+(* {mono f : x / a >-> r} <-> f is monotone with respect to projectors *)
+(* (fun x => a) and (fun x => r); if r == R[x], *)
+(* this states that R[f x] = a for all x. *)
+(* {mono f : x / a} <-> f is monotone with respect to the projector *)
+(* expression (fun x => a). *)
+(* {mono f : x y / a >-> r} <-> f is monotone with respect to relators *)
+(* (fun x y => a) and (fun x y => r). *)
+(* {mono f : x y / a} <-> f is monotone with respect to the relator *)
+(* expression (fun x y => a). *)
+(* *)
+(* The file also contains some basic lemmas for the above concepts. *)
+(* Lemmas relative to cancellation laws use some abbreviated suffixes: *)
+(* K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x). *)
+(* LR - a lemma moving an operation from the left hand side of a relation to *)
+(* the right hand side, like canLR: cancel g f -> x = g y -> f x = y. *)
+(* RL - a lemma moving an operation from the right to the left, e.g., canRL. *)
+(* Beware that the LR and RL orientations refer to an "apply" (back chaining) *)
+(* usage; when using the same lemmas with "have" or "move" (forward chaining) *)
+(* the directions will be reversed!. *)
+(******************************************************************************)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Delimit Scope fun_scope with FUN.
+Open Scope fun_scope.
+
+(* Notations for argument transpose *)
+Notation "f ^~ y" := (fun x => f x y)
+ (at level 10, y at level 8, no associativity, format "f ^~ y") : fun_scope.
+Notation "@^~ x" := (fun f => f x)
+ (at level 10, x at level 8, no associativity, format "@^~ x") : fun_scope.
+
+Delimit Scope pair_scope with PAIR.
+Open Scope pair_scope.
+
+(* Notations for pair/conjunction projections *)
+Notation "p .1" := (fst p)
+ (at level 2, left associativity, format "p .1") : pair_scope.
+Notation "p .2" := (snd p)
+ (at level 2, left associativity, format "p .2") : pair_scope.
+
+Coercion pair_of_and P Q (PandQ : P /\ Q) := (proj1 PandQ, proj2 PandQ).
+
+Definition all_pair I T U (w : forall i : I, T i * U i) :=
+ (fun i => (w i).1, fun i => (w i).2).
+
+(* Complements on the option type constructor, used below to *)
+(* encode partial functions. *)
+
+Module Option.
+
+Definition apply aT rT (f : aT -> rT) x u := if u is Some y then f y else x.
+
+Definition default T := apply (fun x : T => x).
+
+Definition bind aT rT (f : aT -> option rT) := apply f None.
+
+Definition map aT rT (f : aT -> rT) := bind (fun x => Some (f x)).
+
+End Option.
+
+Notation oapp := Option.apply.
+Notation odflt := Option.default.
+Notation obind := Option.bind.
+Notation omap := Option.map.
+Notation some := (@Some _) (only parsing).
+
+(* Shorthand for some basic equality lemmas. *)
+
+Notation erefl := refl_equal.
+Notation ecast i T e x := (let: erefl in _ = i := e return T in x).
+Definition esym := sym_eq.
+Definition nesym := sym_not_eq.
+Definition etrans := trans_eq.
+Definition congr1 := f_equal.
+Definition congr2 := f_equal2.
+(* Force at least one implicit when used as a view. *)
+Prenex Implicits esym nesym.
+
+(* A predicate for singleton types. *)
+Definition all_equal_to T (x0 : T) := forall x, unkeyed x = x0.
+
+Lemma unitE : all_equal_to tt. Proof. by case. Qed.
+
+(* A generic wrapper type *)
+
+Structure wrapped T := Wrap {unwrap : T}.
+Canonical wrap T x := @Wrap T x.
+
+Prenex Implicits unwrap wrap Wrap.
+
+(* Syntax for defining auxiliary recursive function. *)
+(* Usage: *)
+(* Section FooDefinition. *)
+(* Variables (g1 : T1) (g2 : T2). (globals) *)
+(* Fixoint foo_auxiliary (a3 : T3) ... := *)
+(* body, using [rec e3, ...] for recursive calls *)
+(* where "[ 'rec' a3 , a4 , ... ]" := foo_auxiliary. *)
+(* Definition foo x y .. := [rec e1, ...]. *)
+(* + proofs about foo *)
+(* End FooDefinition. *)
+
+Reserved Notation "[ 'rec' a0 ]"
+ (at level 0, format "[ 'rec' a0 ]").
+Reserved Notation "[ 'rec' a0 , a1 ]"
+ (at level 0, format "[ 'rec' a0 , a1 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 ]"
+ (at level 0, format "[ 'rec' a0 , a1 , a2 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 ]"
+ (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 ]"
+ (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]"
+ (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]"
+ (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]"
+ (at level 0,
+ format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]"
+ (at level 0,
+ format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]").
+Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]"
+ (at level 0,
+ format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]").
+
+(* Definitions and notation for explicit functions with simplification, *)
+(* i.e., which simpl and /= beta expand (this is complementary to nosimpl). *)
+
+Section SimplFun.
+
+Variables aT rT : Type.
+
+CoInductive simpl_fun := SimplFun of aT -> rT.
+
+Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x.
+
+Coercion fun_of_simpl : simpl_fun >-> Funclass.
+
+End SimplFun.
+
+Notation "[ 'fun' : T => E ]" := (SimplFun (fun _ : T => E))
+ (at level 0,
+ format "'[hv' [ 'fun' : T => '/ ' E ] ']'") : fun_scope.
+
+Notation "[ 'fun' x => E ]" := (SimplFun (fun x => E))
+ (at level 0, x ident,
+ format "'[hv' [ 'fun' x => '/ ' E ] ']'") : fun_scope.
+
+Notation "[ 'fun' x : T => E ]" := (SimplFun (fun x : T => E))
+ (at level 0, x ident, only parsing) : fun_scope.
+
+Notation "[ 'fun' x y => E ]" := (fun x => [fun y => E])
+ (at level 0, x ident, y ident,
+ format "'[hv' [ 'fun' x y => '/ ' E ] ']'") : fun_scope.
+
+Notation "[ 'fun' x y : T => E ]" := (fun x : T => [fun y : T => E])
+ (at level 0, x ident, y ident, only parsing) : fun_scope.
+
+Notation "[ 'fun' ( x : T ) y => E ]" := (fun x : T => [fun y => E])
+ (at level 0, x ident, y ident, only parsing) : fun_scope.
+
+Notation "[ 'fun' x ( y : T ) => E ]" := (fun x => [fun y : T => E])
+ (at level 0, x ident, y ident, only parsing) : fun_scope.
+
+Notation "[ 'fun' ( x : xT ) ( y : yT ) => E ]" :=
+ (fun x : xT => [fun y : yT => E])
+ (at level 0, x ident, y ident, only parsing) : fun_scope.
+
+(* For delta functions in eqtype.v. *)
+Definition SimplFunDelta aT rT (f : aT -> aT -> rT) := [fun z => f z z].
+
+(* Extensional equality, for unary and binary functions, including syntactic *)
+(* sugar. *)
+
+Section ExtensionalEquality.
+
+Variables A B C : Type.
+
+Definition eqfun (f g : B -> A) : Prop := forall x, f x = g x.
+
+Definition eqrel (r s : C -> B -> A) : Prop := forall x y, r x y = s x y.
+
+Lemma frefl f : eqfun f f. Proof. by []. Qed.
+Lemma fsym f g : eqfun f g -> eqfun g f. Proof. by move=> eq_fg x. Qed.
+
+Lemma ftrans f g h : eqfun f g -> eqfun g h -> eqfun f h.
+Proof. by move=> eq_fg eq_gh x; rewrite eq_fg. Qed.
+
+Lemma rrefl r : eqrel r r. Proof. by []. Qed.
+
+End ExtensionalEquality.
+
+Typeclasses Opaque eqfun.
+Typeclasses Opaque eqrel.
+
+Hint Resolve frefl rrefl.
+
+Notation "f1 =1 f2" := (eqfun f1 f2)
+ (at level 70, no associativity) : fun_scope.
+Notation "f1 =1 f2 :> A" := (f1 =1 (f2 : A))
+ (at level 70, f2 at next level, A at level 90) : fun_scope.
+Notation "f1 =2 f2" := (eqrel f1 f2)
+ (at level 70, no associativity) : fun_scope.
+Notation "f1 =2 f2 :> A" := (f1 =2 (f2 : A))
+ (at level 70, f2 at next level, A at level 90) : fun_scope.
+
+Section Composition.
+
+Variables A B C : Type.
+
+Definition funcomp u (f : B -> A) (g : C -> B) x := let: tt := u in f (g x).
+Definition catcomp u g f := funcomp u f g.
+Local Notation comp := (funcomp tt).
+
+Definition pcomp (f : B -> option A) (g : C -> option B) x := obind f (g x).
+
+Lemma eq_comp f f' g g' : f =1 f' -> g =1 g' -> comp f g =1 comp f' g'.
+Proof. by move=> eq_ff' eq_gg' x; rewrite /= eq_gg' eq_ff'. Qed.
+
+End Composition.
+
+Notation comp := (funcomp tt).
+Notation "@ 'comp'" := (fun A B C => @funcomp A B C tt).
+Notation "f1 \o f2" := (comp f1 f2)
+ (at level 50, format "f1 \o '/ ' f2") : fun_scope.
+Notation "f1 \; f2" := (catcomp tt f1 f2)
+ (at level 60, right associativity, format "f1 \; '/ ' f2") : fun_scope.
+
+Notation "[ 'eta' f ]" := (fun x => f x)
+ (at level 0, format "[ 'eta' f ]") : fun_scope.
+
+Notation "'fun' => E" := (fun _ => E) (at level 200, only parsing) : fun_scope.
+
+Notation id := (fun x => x).
+Notation "@ 'id' T" := (fun x : T => x)
+ (at level 10, T at level 8, only parsing) : fun_scope.
+
+Definition id_head T u x : T := let: tt := u in x.
+Definition explicit_id_key := tt.
+Notation idfun := (id_head tt).
+Notation "@ 'idfun' T " := (@id_head T explicit_id_key)
+ (at level 10, T at level 8, format "@ 'idfun' T") : fun_scope.
+
+Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2.
+
+(* Strong sigma types. *)
+
+Section Tag.
+
+Variables (I : Type) (i : I) (T_ U_ : I -> Type).
+
+Definition tag := projT1.
+Definition tagged : forall w, T_(tag w) := @projT2 I [eta T_].
+Definition Tagged x := @existT I [eta T_] i x.
+
+Definition tag2 (w : @sigT2 I T_ U_) := let: existT2 _ _ i _ _ := w in i.
+Definition tagged2 w : T_(tag2 w) := let: existT2 _ _ _ x _ := w in x.
+Definition tagged2' w : U_(tag2 w) := let: existT2 _ _ _ _ y := w in y.
+Definition Tagged2 x y := @existT2 I [eta T_] [eta U_] i x y.
+
+End Tag.
+
+Arguments Tagged [I i].
+Arguments Tagged2 [I i].
+Prenex Implicits tag tagged Tagged tag2 tagged2 tagged2' Tagged2.
+
+Coercion tag_of_tag2 I T_ U_ (w : @sigT2 I T_ U_) :=
+ Tagged (fun i => T_ i * U_ i)%type (tagged2 w, tagged2' w).
+
+Lemma all_tag I T U :
+ (forall x : I, {y : T x & U x y}) ->
+ {f : forall x, T x & forall x, U x (f x)}.
+Proof. by move=> fP; exists (fun x => tag (fP x)) => x; case: (fP x). Qed.
+
+Lemma all_tag2 I T U V :
+ (forall i : I, {y : T i & U i y & V i y}) ->
+ {f : forall i, T i & forall i, U i (f i) & forall i, V i (f i)}.
+Proof. by case/all_tag=> f /all_pair[]; exists f. Qed.
+
+(* Refinement types. *)
+
+(* Prenex Implicits and renaming. *)
+Notation sval := (@proj1_sig _ _).
+Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
+
+Section Sig.
+
+Variables (T : Type) (P Q : T -> Prop).
+
+Lemma svalP (u : sig P) : P (sval u). Proof. by case: u. Qed.
+
+Definition s2val (u : sig2 P Q) := let: exist2 _ _ x _ _ := u in x.
+
+Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.
+
+Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.
+
+End Sig.
+
+Prenex Implicits svalP s2val s2valP s2valP'.
+
+Coercion tag_of_sig I P (u : @sig I P) := Tagged P (svalP u).
+
+Coercion sig_of_sig2 I P Q (u : @sig2 I P Q) :=
+ exist (fun i => P i /\ Q i) (s2val u) (conj (s2valP u) (s2valP' u)).
+
+Lemma all_sig I T P :
+ (forall x : I, {y : T x | P x y}) ->
+ {f : forall x, T x | forall x, P x (f x)}.
+Proof. by case/all_tag=> f; exists f. Qed.
+
+Lemma all_sig2 I T P Q :
+ (forall x : I, {y : T x | P x y & Q x y}) ->
+ {f : forall x, T x | forall x, P x (f x) & forall x, Q x (f x)}.
+Proof. by case/all_sig=> f /all_pair[]; exists f. Qed.
+
+Section Morphism.
+
+Variables (aT rT sT : Type) (f : aT -> rT).
+
+(* Morphism property for unary and binary functions *)
+Definition morphism_1 aF rF := forall x, f (aF x) = rF (f x).
+Definition morphism_2 aOp rOp := forall x y, f (aOp x y) = rOp (f x) (f y).
+
+(* Homomorphism property for unary and binary relations *)
+Definition homomorphism_1 (aP rP : _ -> Prop) := forall x, aP x -> rP (f x).
+Definition homomorphism_2 (aR rR : _ -> _ -> Prop) :=
+ forall x y, aR x y -> rR (f x) (f y).
+
+(* Stability property for unary and binary relations *)
+Definition monomorphism_1 (aP rP : _ -> sT) := forall x, rP (f x) = aP x.
+Definition monomorphism_2 (aR rR : _ -> _ -> sT) :=
+ forall x y, rR (f x) (f y) = aR x y.
+
+End Morphism.
+
+Notation "{ 'morph' f : x / a >-> r }" :=
+ (morphism_1 f (fun x => a) (fun x => r))
+ (at level 0, f at level 99, x ident,
+ format "{ 'morph' f : x / a >-> r }") : type_scope.
+
+Notation "{ 'morph' f : x / a }" :=
+ (morphism_1 f (fun x => a) (fun x => a))
+ (at level 0, f at level 99, x ident,
+ format "{ 'morph' f : x / a }") : type_scope.
+
+Notation "{ 'morph' f : x y / a >-> r }" :=
+ (morphism_2 f (fun x y => a) (fun x y => r))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'morph' f : x y / a >-> r }") : type_scope.
+
+Notation "{ 'morph' f : x y / a }" :=
+ (morphism_2 f (fun x y => a) (fun x y => a))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'morph' f : x y / a }") : type_scope.
+
+Notation "{ 'homo' f : x / a >-> r }" :=
+ (homomorphism_1 f (fun x => a) (fun x => r))
+ (at level 0, f at level 99, x ident,
+ format "{ 'homo' f : x / a >-> r }") : type_scope.
+
+Notation "{ 'homo' f : x / a }" :=
+ (homomorphism_1 f (fun x => a) (fun x => a))
+ (at level 0, f at level 99, x ident,
+ format "{ 'homo' f : x / a }") : type_scope.
+
+Notation "{ 'homo' f : x y / a >-> r }" :=
+ (homomorphism_2 f (fun x y => a) (fun x y => r))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'homo' f : x y / a >-> r }") : type_scope.
+
+Notation "{ 'homo' f : x y / a }" :=
+ (homomorphism_2 f (fun x y => a) (fun x y => a))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'homo' f : x y / a }") : type_scope.
+
+Notation "{ 'homo' f : x y /~ a }" :=
+ (homomorphism_2 f (fun y x => a) (fun x y => a))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'homo' f : x y /~ a }") : type_scope.
+
+Notation "{ 'mono' f : x / a >-> r }" :=
+ (monomorphism_1 f (fun x => a) (fun x => r))
+ (at level 0, f at level 99, x ident,
+ format "{ 'mono' f : x / a >-> r }") : type_scope.
+
+Notation "{ 'mono' f : x / a }" :=
+ (monomorphism_1 f (fun x => a) (fun x => a))
+ (at level 0, f at level 99, x ident,
+ format "{ 'mono' f : x / a }") : type_scope.
+
+Notation "{ 'mono' f : x y / a >-> r }" :=
+ (monomorphism_2 f (fun x y => a) (fun x y => r))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'mono' f : x y / a >-> r }") : type_scope.
+
+Notation "{ 'mono' f : x y / a }" :=
+ (monomorphism_2 f (fun x y => a) (fun x y => a))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'mono' f : x y / a }") : type_scope.
+
+Notation "{ 'mono' f : x y /~ a }" :=
+ (monomorphism_2 f (fun y x => a) (fun x y => a))
+ (at level 0, f at level 99, x ident, y ident,
+ format "{ 'mono' f : x y /~ a }") : type_scope.
+
+(* In an intuitionistic setting, we have two degrees of injectivity. The *)
+(* weaker one gives only simplification, and the strong one provides a left *)
+(* inverse (we show in `fintype' that they coincide for finite types). *)
+(* We also define an intermediate version where the left inverse is only a *)
+(* partial function. *)
+
+Section Injections.
+
+(* rT must come first so we can use @ to mitigate the Coq 1st order *)
+(* unification bug (e..g., Coq can't infer rT from a "cancel" lemma). *)
+Variables (rT aT : Type) (f : aT -> rT).
+
+Definition injective := forall x1 x2, f x1 = f x2 -> x1 = x2.
+
+Definition cancel g := forall x, g (f x) = x.
+
+Definition pcancel g := forall x, g (f x) = Some x.
+
+Definition ocancel (g : aT -> option rT) h := forall x, oapp h x (g x) = x.
+
+Lemma can_pcan g : cancel g -> pcancel (fun y => Some (g y)).
+Proof. by move=> fK x; congr (Some _). Qed.
+
+Lemma pcan_inj g : pcancel g -> injective.
+Proof. by move=> fK x y /(congr1 g); rewrite !fK => [[]]. Qed.
+
+Lemma can_inj g : cancel g -> injective.
+Proof. by move/can_pcan; apply: pcan_inj. Qed.
+
+Lemma canLR g x y : cancel g -> x = f y -> g x = y.
+Proof. by move=> fK ->. Qed.
+
+Lemma canRL g x y : cancel g -> f x = y -> x = g y.
+Proof. by move=> fK <-. Qed.
+
+End Injections.
+
+Lemma Some_inj {T} : injective (@Some T). Proof. by move=> x y []. Qed.
+
+(* Force implicits to use as a view. *)
+Prenex Implicits Some_inj.
+
+(* cancellation lemmas for dependent type casts. *)
+Lemma esymK T x y : cancel (@esym T x y) (@esym T y x).
+Proof. by case: y /. Qed.
+
+Lemma etrans_id T x y (eqxy : x = y :> T) : etrans (erefl x) eqxy = eqxy.
+Proof. by case: y / eqxy. Qed.
+
+Section InjectionsTheory.
+
+Variables (A B C : Type) (f g : B -> A) (h : C -> B).
+
+Lemma inj_id : injective (@id A).
+Proof. by []. Qed.
+
+Lemma inj_can_sym f' : cancel f f' -> injective f' -> cancel f' f.
+Proof. by move=> fK injf' x; apply: injf'. Qed.
+
+Lemma inj_comp : injective f -> injective h -> injective (f \o h).
+Proof. by move=> injf injh x y /injf; apply: injh. Qed.
+
+Lemma can_comp f' h' : cancel f f' -> cancel h h' -> cancel (f \o h) (h' \o f').
+Proof. by move=> fK hK x; rewrite /= fK hK. Qed.
+
+Lemma pcan_pcomp f' h' :
+ pcancel f f' -> pcancel h h' -> pcancel (f \o h) (pcomp h' f').
+Proof. by move=> fK hK x; rewrite /pcomp fK /= hK. Qed.
+
+Lemma eq_inj : injective f -> f =1 g -> injective g.
+Proof. by move=> injf eqfg x y; rewrite -2!eqfg; apply: injf. Qed.
+
+Lemma eq_can f' g' : cancel f f' -> f =1 g -> f' =1 g' -> cancel g g'.
+Proof. by move=> fK eqfg eqfg' x; rewrite -eqfg -eqfg'. Qed.
+
+Lemma inj_can_eq f' : cancel f f' -> injective f' -> cancel g f' -> f =1 g.
+Proof. by move=> fK injf' gK x; apply: injf'; rewrite fK. Qed.
+
+End InjectionsTheory.
+
+Section Bijections.
+
+Variables (A B : Type) (f : B -> A).
+
+CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.
+
+Hypothesis bijf : bijective.
+
+Lemma bij_inj : injective f.
+Proof. by case: bijf => g fK _; apply: can_inj fK. Qed.
+
+Lemma bij_can_sym f' : cancel f' f <-> cancel f f'.
+Proof.
+split=> fK; first exact: inj_can_sym fK bij_inj.
+by case: bijf => h _ hK x; rewrite -[x]hK fK.
+Qed.
+
+Lemma bij_can_eq f' f'' : cancel f f' -> cancel f f'' -> f' =1 f''.
+Proof.
+by move=> fK fK'; apply: (inj_can_eq _ bij_inj); apply/bij_can_sym.
+Qed.
+
+End Bijections.
+
+Section BijectionsTheory.
+
+Variables (A B C : Type) (f : B -> A) (h : C -> B).
+
+Lemma eq_bij : bijective f -> forall g, f =1 g -> bijective g.
+Proof. by case=> f' fK f'K g eqfg; exists f'; eapply eq_can; eauto. Qed.
+
+Lemma bij_comp : bijective f -> bijective h -> bijective (f \o h).
+Proof.
+by move=> [f' fK f'K] [h' hK h'K]; exists (h' \o f'); apply: can_comp; auto.
+Qed.
+
+Lemma bij_can_bij : bijective f -> forall f', cancel f f' -> bijective f'.
+Proof. by move=> bijf; exists f; first by apply/(bij_can_sym bijf). Qed.
+
+End BijectionsTheory.
+
+Section Involutions.
+
+Variables (A : Type) (f : A -> A).
+
+Definition involutive := cancel f f.
+
+Hypothesis Hf : involutive.
+
+Lemma inv_inj : injective f. Proof. exact: can_inj Hf. Qed.
+Lemma inv_bij : bijective f. Proof. by exists f. Qed.
+
+End Involutions.
+
+Section OperationProperties.
+
+Variables S T R : Type.
+
+Section SopTisR.
+Implicit Type op : S -> T -> R.
+Definition left_inverse e inv op := forall x, op (inv x) x = e.
+Definition right_inverse e inv op := forall x, op x (inv x) = e.
+Definition left_injective op := forall x, injective (op^~ x).
+Definition right_injective op := forall y, injective (op y).
+End SopTisR.
+
+
+Section SopTisS.
+Implicit Type op : S -> T -> S.
+Definition right_id e op := forall x, op x e = x.
+Definition left_zero z op := forall x, op z x = z.
+Definition right_commutative op := forall x y z, op (op x y) z = op (op x z) y.
+Definition left_distributive op add :=
+ forall x y z, op (add x y) z = add (op x z) (op y z).
+Definition right_loop inv op := forall y, cancel (op^~ y) (op^~ (inv y)).
+Definition rev_right_loop inv op := forall y, cancel (op^~ (inv y)) (op^~ y).
+End SopTisS.
+
+Section SopTisT.
+Implicit Type op : S -> T -> T.
+Definition left_id e op := forall x, op e x = x.
+Definition right_zero z op := forall x, op x z = z.
+Definition left_commutative op := forall x y z, op x (op y z) = op y (op x z).
+Definition right_distributive op add :=
+ forall x y z, op x (add y z) = add (op x y) (op x z).
+Definition left_loop inv op := forall x, cancel (op x) (op (inv x)).
+Definition rev_left_loop inv op := forall x, cancel (op (inv x)) (op x).
+End SopTisT.
+
+Section SopSisT.
+Implicit Type op : S -> S -> T.
+Definition self_inverse e op := forall x, op x x = e.
+Definition commutative op := forall x y, op x y = op y x.
+End SopSisT.
+
+Section SopSisS.
+Implicit Type op : S -> S -> S.
+Definition idempotent op := forall x, op x x = x.
+Definition associative op := forall x y z, op x (op y z) = op (op x y) z.
+Definition interchange op1 op2 :=
+ forall x y z t, op1 (op2 x y) (op2 z t) = op2 (op1 x z) (op1 y t).
+End SopSisS.
+
+End OperationProperties.
+
+
+
+
+
+
+
+
+
+