summaryrefslogtreecommitdiff
path: root/plugins/setoid_ring/newring.ml4
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/setoid_ring/newring.ml4')
-rw-r--r--plugins/setoid_ring/newring.ml41164
1 files changed, 1164 insertions, 0 deletions
diff --git a/plugins/setoid_ring/newring.ml4 b/plugins/setoid_ring/newring.ml4
new file mode 100644
index 00000000..535dbdbd
--- /dev/null
+++ b/plugins/setoid_ring/newring.ml4
@@ -0,0 +1,1164 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(*i $Id$ i*)
+
+open Pp
+open Util
+open Names
+open Term
+open Closure
+open Environ
+open Libnames
+open Tactics
+open Rawterm
+open Termops
+open Tacticals
+open Tacexpr
+open Pcoq
+open Tactic
+open Constr
+open Proof_type
+open Coqlib
+open Tacmach
+open Mod_subst
+open Tacinterp
+open Libobject
+open Printer
+open Declare
+open Decl_kinds
+open Entries
+
+(****************************************************************************)
+(* controlled reduction *)
+
+let mark_arg i c = mkEvar(i,[|c|])
+let unmark_arg f c =
+ match destEvar c with
+ | (i,[|c|]) -> f i c
+ | _ -> assert false
+
+type protect_flag = Eval|Prot|Rec
+
+let tag_arg tag_rec map subs i c =
+ match map i with
+ Eval -> mk_clos subs c
+ | Prot -> mk_atom c
+ | Rec -> if i = -1 then mk_clos subs c else tag_rec c
+
+let rec mk_clos_but f_map subs t =
+ match f_map t with
+ | Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t
+ | None ->
+ (match kind_of_term t with
+ App(f,args) -> mk_clos_app_but f_map subs f args 0
+ | Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t
+ | _ -> mk_atom t)
+
+and mk_clos_app_but f_map subs f args n =
+ if n >= Array.length args then mk_atom(mkApp(f, args))
+ else
+ let fargs, args' = array_chop n args in
+ let f' = mkApp(f,fargs) in
+ match f_map f' with
+ Some map ->
+ mk_clos_deep
+ (fun s' -> unmark_arg (tag_arg (mk_clos_but f_map s') map s'))
+ subs
+ (mkApp (mark_arg (-1) f', Array.mapi mark_arg args'))
+ | None -> mk_clos_app_but f_map subs f args (n+1)
+
+
+let interp_map l c =
+ try
+ let (im,am) = List.assoc c l in
+ Some(fun i ->
+ if List.mem i im then Eval
+ else if List.mem i am then Prot
+ else if i = -1 then Eval
+ else Rec)
+ with Not_found -> None
+
+let interp_map l t =
+ try Some(List.assoc t l) with Not_found -> None
+
+let protect_maps = ref Stringmap.empty
+let add_map s m = protect_maps := Stringmap.add s m !protect_maps
+let lookup_map map =
+ try Stringmap.find map !protect_maps
+ with Not_found ->
+ errorlabstrm"lookup_map"(str"map "++qs map++str"not found")
+
+let protect_red map env sigma c =
+ kl (create_clos_infos betadeltaiota env)
+ (mk_clos_but (lookup_map map c) (Esubst.ESID 0) c);;
+
+let protect_tac map =
+ Tactics.reduct_option (protect_red map,DEFAULTcast) None ;;
+
+let protect_tac_in map id =
+ Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id,InHyp));;
+
+
+TACTIC EXTEND protect_fv
+ [ "protect_fv" string(map) "in" ident(id) ] ->
+ [ protect_tac_in map id ]
+| [ "protect_fv" string(map) ] ->
+ [ protect_tac map ]
+END;;
+
+(****************************************************************************)
+
+let closed_term t l =
+ let l = List.map constr_of_global l in
+ let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in
+ if Quote.closed_under cs t then tclIDTAC else tclFAIL 0 (mt())
+;;
+
+TACTIC EXTEND closed_term
+ [ "closed_term" constr(t) "[" ne_reference_list(l) "]" ] ->
+ [ closed_term t l ]
+END
+;;
+
+TACTIC EXTEND echo
+| [ "echo" constr(t) ] ->
+ [ Pp.msg (Termops.print_constr t); Tacinterp.eval_tactic (TacId []) ]
+END;;
+
+(*
+let closed_term_ast l =
+ TacFun([Some(id_of_string"t")],
+ TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
+ [Genarg.in_gen Genarg.wit_constr (mkVar(id_of_string"t"));
+ Genarg.in_gen (Genarg.wit_list1 Genarg.wit_ref) l])))
+*)
+let closed_term_ast l =
+ let l = List.map (fun gr -> ArgArg(dummy_loc,gr)) l in
+ TacFun([Some(id_of_string"t")],
+ TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
+ [Genarg.in_gen Genarg.globwit_constr (RVar(dummy_loc,id_of_string"t"),None);
+ Genarg.in_gen (Genarg.wit_list1 Genarg.globwit_ref) l])))
+(*
+let _ = add_tacdef false ((dummy_loc,id_of_string"ring_closed_term"
+*)
+
+(****************************************************************************)
+
+let ic c =
+ let env = Global.env() and sigma = Evd.empty in
+ Constrintern.interp_constr sigma env c
+
+let ty c = Typing.type_of (Global.env()) Evd.empty c
+
+let decl_constant na c =
+ mkConst(declare_constant (id_of_string na) (DefinitionEntry
+ { const_entry_body = c;
+ const_entry_type = None;
+ const_entry_opaque = true;
+ const_entry_boxed = true},
+ IsProof Lemma))
+
+(* Calling a global tactic *)
+let ltac_call tac (args:glob_tactic_arg list) =
+ TacArg(TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args))
+
+(* Calling a locally bound tactic *)
+let ltac_lcall tac args =
+ TacArg(TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args))
+
+let ltac_letin (x, e1) e2 =
+ TacLetIn(false,[(dummy_loc,id_of_string x),e1],e2)
+
+let ltac_apply (f:glob_tactic_expr) (args:glob_tactic_arg list) =
+ Tacinterp.eval_tactic
+ (ltac_letin ("F", Tacexp f) (ltac_lcall "F" args))
+
+let ltac_record flds =
+ TacFun([Some(id_of_string"proj")], ltac_lcall "proj" flds)
+
+
+let carg c = TacDynamic(dummy_loc,Pretyping.constr_in c)
+
+let dummy_goal env =
+ {Evd.it = Evd.make_evar (named_context_val env) mkProp;
+ Evd.sigma = Evd.empty}
+
+let exec_tactic env n f args =
+ let lid = list_tabulate(fun i -> id_of_string("x"^string_of_int i)) n in
+ let res = ref [||] in
+ let get_res ist =
+ let l = List.map (fun id -> List.assoc id ist.lfun) lid in
+ res := Array.of_list l;
+ TacId[] in
+ let getter =
+ Tacexp(TacFun(List.map(fun id -> Some id) lid,
+ glob_tactic(tacticIn get_res))) in
+ let _ =
+ Tacinterp.eval_tactic(ltac_call f (args@[getter])) (dummy_goal env) in
+ !res
+
+let constr_of = function
+ | VConstr ([],c) -> c
+ | _ -> failwith "Ring.exec_tactic: anomaly"
+
+let stdlib_modules =
+ [["Coq";"Setoids";"Setoid"];
+ ["Coq";"Lists";"List"];
+ ["Coq";"Init";"Datatypes"];
+ ["Coq";"Init";"Logic"];
+ ]
+
+let coq_constant c =
+ lazy (Coqlib.gen_constant_in_modules "Ring" stdlib_modules c)
+
+let coq_mk_Setoid = coq_constant "Build_Setoid_Theory"
+let coq_cons = coq_constant "cons"
+let coq_nil = coq_constant "nil"
+let coq_None = coq_constant "None"
+let coq_Some = coq_constant "Some"
+let coq_eq = coq_constant "eq"
+
+let lapp f args = mkApp(Lazy.force f,args)
+
+let dest_rel0 t =
+ match kind_of_term t with
+ | App(f,args) when Array.length args >= 2 ->
+ let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in
+ if closed0 rel then
+ (rel,args.(Array.length args - 2),args.(Array.length args - 1))
+ else error "ring: cannot find relation (not closed)"
+ | _ -> error "ring: cannot find relation"
+
+let rec dest_rel t =
+ match kind_of_term t with
+ | Prod(_,_,c) -> dest_rel c
+ | _ -> dest_rel0 t
+
+(****************************************************************************)
+(* Library linking *)
+
+let plugin_dir = "setoid_ring"
+
+let cdir = ["Coq";plugin_dir]
+let plugin_modules =
+ List.map (fun d -> cdir@d)
+ [["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"];
+ ["Field_tac"]; ["Field_theory"]
+ ]
+
+let my_constant c =
+ lazy (Coqlib.gen_constant_in_modules "Ring" plugin_modules c)
+
+let new_ring_path =
+ make_dirpath (List.map id_of_string ["Ring_tac";plugin_dir;"Coq"])
+let ltac s =
+ lazy(make_kn (MPfile new_ring_path) (make_dirpath []) (mk_label s))
+let znew_ring_path =
+ make_dirpath (List.map id_of_string ["InitialRing";plugin_dir;"Coq"])
+let zltac s =
+ lazy(make_kn (MPfile znew_ring_path) (make_dirpath []) (mk_label s))
+
+let mk_cst l s = lazy (Coqlib.gen_constant "newring" l s);;
+let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;;
+
+(* Ring theory *)
+
+(* almost_ring defs *)
+let coq_almost_ring_theory = my_constant "almost_ring_theory"
+
+(* setoid and morphism utilities *)
+let coq_eq_setoid = my_constant "Eqsth"
+let coq_eq_morph = my_constant "Eq_ext"
+let coq_eq_smorph = my_constant "Eq_s_ext"
+
+(* ring -> almost_ring utilities *)
+let coq_ring_theory = my_constant "ring_theory"
+let coq_mk_reqe = my_constant "mk_reqe"
+
+(* semi_ring -> almost_ring utilities *)
+let coq_semi_ring_theory = my_constant "semi_ring_theory"
+let coq_mk_seqe = my_constant "mk_seqe"
+
+let ltac_inv_morph_gen = zltac"inv_gen_phi"
+let ltac_inv_morphZ = zltac"inv_gen_phiZ"
+let ltac_inv_morphN = zltac"inv_gen_phiN"
+let ltac_inv_morphNword = zltac"inv_gen_phiNword"
+let coq_abstract = my_constant"Abstract"
+let coq_comp = my_constant"Computational"
+let coq_morph = my_constant"Morphism"
+
+(* morphism *)
+let coq_ring_morph = my_constant "ring_morph"
+let coq_semi_morph = my_constant "semi_morph"
+
+(* power function *)
+let ltac_inv_morph_nothing = zltac"inv_morph_nothing"
+let coq_pow_N_pow_N = my_constant "pow_N_pow_N"
+
+(* hypothesis *)
+let coq_mkhypo = my_constant "mkhypo"
+let coq_hypo = my_constant "hypo"
+
+(* Equality: do not evaluate but make recursive call on both sides *)
+let map_with_eq arg_map c =
+ let (req,_,_) = dest_rel c in
+ interp_map
+ ((req,(function -1->Prot|_->Rec))::
+ List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)
+
+let _ = add_map "ring"
+ (map_with_eq
+ [coq_cons,(function -1->Eval|2->Rec|_->Prot);
+ coq_nil, (function -1->Eval|_ -> Prot);
+ (* Pphi_dev: evaluate polynomial and coef operations, protect
+ ring operations and make recursive call on the var map *)
+ pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
+ pol_cst "Pphi_pow",
+ (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
+ (* PEeval: evaluate morphism and polynomial, protect ring
+ operations and make recursive call on the var map *)
+ pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)])
+
+(****************************************************************************)
+(* Ring database *)
+
+type ring_info =
+ { ring_carrier : types;
+ ring_req : constr;
+ ring_setoid : constr;
+ ring_ext : constr;
+ ring_morph : constr;
+ ring_th : constr;
+ ring_cst_tac : glob_tactic_expr;
+ ring_pow_tac : glob_tactic_expr;
+ ring_lemma1 : constr;
+ ring_lemma2 : constr;
+ ring_pre_tac : glob_tactic_expr;
+ ring_post_tac : glob_tactic_expr }
+
+module Cmap = Map.Make(struct type t = constr let compare = compare end)
+
+let from_carrier = ref Cmap.empty
+let from_relation = ref Cmap.empty
+let from_name = ref Spmap.empty
+
+let ring_for_carrier r = Cmap.find r !from_carrier
+let ring_for_relation rel = Cmap.find rel !from_relation
+
+
+let find_ring_structure env sigma l =
+ match l with
+ | t::cl' ->
+ let ty = Retyping.get_type_of env sigma t in
+ let check c =
+ let ty' = Retyping.get_type_of env sigma c in
+ if not (Reductionops.is_conv env sigma ty ty') then
+ errorlabstrm "ring"
+ (str"arguments of ring_simplify do not have all the same type")
+ in
+ List.iter check cl';
+ (try ring_for_carrier ty
+ with Not_found ->
+ errorlabstrm "ring"
+ (str"cannot find a declared ring structure over"++
+ spc()++str"\""++pr_constr ty++str"\""))
+ | [] -> assert false
+(*
+ let (req,_,_) = dest_rel cl in
+ (try ring_for_relation req
+ with Not_found ->
+ errorlabstrm "ring"
+ (str"cannot find a declared ring structure for equality"++
+ spc()++str"\""++pr_constr req++str"\"")) *)
+
+let _ =
+ Summary.declare_summary "tactic-new-ring-table"
+ { Summary.freeze_function =
+ (fun () -> !from_carrier,!from_relation,!from_name);
+ Summary.unfreeze_function =
+ (fun (ct,rt,nt) ->
+ from_carrier := ct; from_relation := rt; from_name := nt);
+ Summary.init_function =
+ (fun () ->
+ from_carrier := Cmap.empty; from_relation := Cmap.empty;
+ from_name := Spmap.empty) }
+
+let add_entry (sp,_kn) e =
+(* let _ = ty e.ring_lemma1 in
+ let _ = ty e.ring_lemma2 in
+*)
+ from_carrier := Cmap.add e.ring_carrier e !from_carrier;
+ from_relation := Cmap.add e.ring_req e !from_relation;
+ from_name := Spmap.add sp e !from_name
+
+
+let subst_th (subst,th) =
+ let c' = subst_mps subst th.ring_carrier in
+ let eq' = subst_mps subst th.ring_req in
+ let set' = subst_mps subst th.ring_setoid in
+ let ext' = subst_mps subst th.ring_ext in
+ let morph' = subst_mps subst th.ring_morph in
+ let th' = subst_mps subst th.ring_th in
+ let thm1' = subst_mps subst th.ring_lemma1 in
+ let thm2' = subst_mps subst th.ring_lemma2 in
+ let tac'= subst_tactic subst th.ring_cst_tac in
+ let pow_tac'= subst_tactic subst th.ring_pow_tac in
+ let pretac'= subst_tactic subst th.ring_pre_tac in
+ let posttac'= subst_tactic subst th.ring_post_tac in
+ if c' == th.ring_carrier &&
+ eq' == th.ring_req &&
+ set' = th.ring_setoid &&
+ ext' == th.ring_ext &&
+ morph' == th.ring_morph &&
+ th' == th.ring_th &&
+ thm1' == th.ring_lemma1 &&
+ thm2' == th.ring_lemma2 &&
+ tac' == th.ring_cst_tac &&
+ pow_tac' == th.ring_pow_tac &&
+ pretac' == th.ring_pre_tac &&
+ posttac' == th.ring_post_tac then th
+ else
+ { ring_carrier = c';
+ ring_req = eq';
+ ring_setoid = set';
+ ring_ext = ext';
+ ring_morph = morph';
+ ring_th = th';
+ ring_cst_tac = tac';
+ ring_pow_tac = pow_tac';
+ ring_lemma1 = thm1';
+ ring_lemma2 = thm2';
+ ring_pre_tac = pretac';
+ ring_post_tac = posttac' }
+
+
+let (theory_to_obj, obj_to_theory) =
+ let cache_th (name,th) = add_entry name th in
+ declare_object
+ {(default_object "tactic-new-ring-theory") with
+ open_function = (fun i o -> if i=1 then cache_th o);
+ cache_function = cache_th;
+ subst_function = subst_th;
+ classify_function = (fun x -> Substitute x)}
+
+
+let setoid_of_relation env a r =
+ let evm = Evd.empty in
+ try
+ lapp coq_mk_Setoid
+ [|a ; r ;
+ Rewrite.get_reflexive_proof env evm a r ;
+ Rewrite.get_symmetric_proof env evm a r ;
+ Rewrite.get_transitive_proof env evm a r |]
+ with Not_found ->
+ error "cannot find setoid relation"
+
+let op_morph r add mul opp req m1 m2 m3 =
+ lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |]
+
+let op_smorph r add mul req m1 m2 =
+ lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |]
+
+(* let default_ring_equality (r,add,mul,opp,req) = *)
+(* let is_setoid = function *)
+(* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *)
+(* eq_constr req rel (\* Qu: use conversion ? *\) *)
+(* | _ -> false in *)
+(* match default_relation_for_carrier ~filter:is_setoid r with *)
+(* Leibniz _ -> *)
+(* let setoid = lapp coq_eq_setoid [|r|] in *)
+(* let op_morph = *)
+(* match opp with *)
+(* Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *)
+(* | None -> lapp coq_eq_smorph [|r;add;mul|] in *)
+(* (setoid,op_morph) *)
+(* | Relation rel -> *)
+(* let setoid = setoid_of_relation rel in *)
+(* let is_endomorphism = function *)
+(* { args=args } -> List.for_all *)
+(* (function (var,Relation rel) -> *)
+(* var=None && eq_constr req rel *)
+(* | _ -> false) args in *)
+(* let add_m = *)
+(* try default_morphism ~filter:is_endomorphism add *)
+(* with Not_found -> *)
+(* error "ring addition should be declared as a morphism" in *)
+(* let mul_m = *)
+(* try default_morphism ~filter:is_endomorphism mul *)
+(* with Not_found -> *)
+(* error "ring multiplication should be declared as a morphism" in *)
+(* let op_morph = *)
+(* match opp with *)
+(* | Some opp -> *)
+(* (let opp_m = *)
+(* try default_morphism ~filter:is_endomorphism opp *)
+(* with Not_found -> *)
+(* error "ring opposite should be declared as a morphism" in *)
+(* let op_morph = *)
+(* op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *)
+(* msgnl *)
+(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++ *)
+(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
+(* str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *)
+(* str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *)
+(* str"\""); *)
+(* op_morph) *)
+(* | None -> *)
+(* (msgnl *)
+(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++ *)
+(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
+(* str"\""++spc()++str"and \""++ *)
+(* pr_constr mul_m.morphism_theory++str"\""); *)
+(* op_smorph r add mul req add_m.lem mul_m.lem) in *)
+(* (setoid,op_morph) *)
+
+let ring_equality (r,add,mul,opp,req) =
+ match kind_of_term req with
+ | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
+ let setoid = lapp coq_eq_setoid [|r|] in
+ let op_morph =
+ match opp with
+ Some opp -> lapp coq_eq_morph [|r;add;mul;opp|]
+ | None -> lapp coq_eq_smorph [|r;add;mul|] in
+ (setoid,op_morph)
+ | _ ->
+ let setoid = setoid_of_relation (Global.env ()) r req in
+ let signature = [Some (r,req);Some (r,req)],Some(r,req) in
+ let add_m, add_m_lem =
+ try Rewrite.default_morphism signature add
+ with Not_found ->
+ error "ring addition should be declared as a morphism" in
+ let mul_m, mul_m_lem =
+ try Rewrite.default_morphism signature mul
+ with Not_found ->
+ error "ring multiplication should be declared as a morphism" in
+ let op_morph =
+ match opp with
+ | Some opp ->
+ (let opp_m,opp_m_lem =
+ try Rewrite.default_morphism ([Some(r,req)],Some(r,req)) opp
+ with Not_found ->
+ error "ring opposite should be declared as a morphism" in
+ let op_morph =
+ op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in
+ Flags.if_verbose
+ msgnl
+ (str"Using setoid \""++pr_constr req++str"\""++spc()++
+ str"and morphisms \""++pr_constr add_m_lem ++
+ str"\","++spc()++ str"\""++pr_constr mul_m_lem++
+ str"\""++spc()++str"and \""++pr_constr opp_m_lem++
+ str"\"");
+ op_morph)
+ | None ->
+ (Flags.if_verbose
+ msgnl
+ (str"Using setoid \""++pr_constr req ++str"\"" ++ spc() ++
+ str"and morphisms \""++pr_constr add_m_lem ++
+ str"\""++spc()++str"and \""++
+ pr_constr mul_m_lem++str"\"");
+ op_smorph r add mul req add_m_lem mul_m_lem) in
+ (setoid,op_morph)
+
+let build_setoid_params r add mul opp req eqth =
+ match eqth with
+ Some th -> th
+ | None -> ring_equality (r,add,mul,opp,req)
+
+let dest_ring env sigma th_spec =
+ let th_typ = Retyping.get_type_of env sigma th_spec in
+ match kind_of_term th_typ with
+ App(f,[|r;zero;one;add;mul;sub;opp;req|])
+ when f = Lazy.force coq_almost_ring_theory ->
+ (None,r,zero,one,add,mul,Some sub,Some opp,req)
+ | App(f,[|r;zero;one;add;mul;req|])
+ when f = Lazy.force coq_semi_ring_theory ->
+ (Some true,r,zero,one,add,mul,None,None,req)
+ | App(f,[|r;zero;one;add;mul;sub;opp;req|])
+ when f = Lazy.force coq_ring_theory ->
+ (Some false,r,zero,one,add,mul,Some sub,Some opp,req)
+ | _ -> error "bad ring structure"
+
+
+let dest_morph env sigma m_spec =
+ let m_typ = Retyping.get_type_of env sigma m_spec in
+ match kind_of_term m_typ with
+ App(f,[|r;zero;one;add;mul;sub;opp;req;
+ c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|])
+ when f = Lazy.force coq_ring_morph ->
+ (c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi)
+ | App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|])
+ when f = Lazy.force coq_semi_morph ->
+ (c,czero,cone,cadd,cmul,None,None,ceqb,phi)
+ | _ -> error "bad morphism structure"
+
+
+type coeff_spec =
+ Computational of constr (* equality test *)
+ | Abstract (* coeffs = Z *)
+ | Morphism of constr (* general morphism *)
+
+
+let reflect_coeff rkind =
+ (* We build an ill-typed terms on purpose... *)
+ match rkind with
+ Abstract -> Lazy.force coq_abstract
+ | Computational c -> lapp coq_comp [|c|]
+ | Morphism m -> lapp coq_morph [|m|]
+
+type cst_tac_spec =
+ CstTac of raw_tactic_expr
+ | Closed of reference list
+
+let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
+ match cst_tac with
+ Some (CstTac t) -> Tacinterp.glob_tactic t
+ | Some (Closed lc) ->
+ closed_term_ast (List.map Smartlocate.global_with_alias lc)
+ | None ->
+ (match rk, opp, kind with
+ Abstract, None, _ ->
+ let t = ArgArg(dummy_loc,Lazy.force ltac_inv_morphN) in
+ TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul]))
+ | Abstract, Some opp, Some _ ->
+ let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphZ) in
+ TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
+ | Abstract, Some opp, None ->
+ let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphNword) in
+ TacArg
+ (TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
+ | Computational _,_,_ ->
+ let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
+ TacArg
+ (TacCall(dummy_loc,t,List.map carg [zero;one;zero;one]))
+ | Morphism mth,_,_ ->
+ let (_,czero,cone,_,_,_,_,_,_) = dest_morph env sigma mth in
+ let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
+ TacArg
+ (TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone])))
+
+let make_hyp env c =
+ let t = Retyping.get_type_of env Evd.empty c in
+ lapp coq_mkhypo [|t;c|]
+
+let make_hyp_list env lH =
+ let carrier = Lazy.force coq_hypo in
+ List.fold_right
+ (fun c l -> lapp coq_cons [|carrier; (make_hyp env c); l|]) lH
+ (lapp coq_nil [|carrier|])
+
+let interp_power env pow =
+ let carrier = Lazy.force coq_hypo in
+ match pow with
+ | None ->
+ let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_nothing) in
+ (TacArg(TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|])
+ | Some (tac, spec) ->
+ let tac =
+ match tac with
+ | CstTac t -> Tacinterp.glob_tactic t
+ | Closed lc ->
+ closed_term_ast (List.map Smartlocate.global_with_alias lc) in
+ let spec = make_hyp env (ic spec) in
+ (tac, lapp coq_Some [|carrier; spec|])
+
+let interp_sign env sign =
+ let carrier = Lazy.force coq_hypo in
+ match sign with
+ | None -> lapp coq_None [|carrier|]
+ | Some spec ->
+ let spec = make_hyp env (ic spec) in
+ lapp coq_Some [|carrier;spec|]
+ (* Same remark on ill-typed terms ... *)
+
+let interp_div env div =
+ let carrier = Lazy.force coq_hypo in
+ match div with
+ | None -> lapp coq_None [|carrier|]
+ | Some spec ->
+ let spec = make_hyp env (ic spec) in
+ lapp coq_Some [|carrier;spec|]
+ (* Same remark on ill-typed terms ... *)
+
+let add_theory name rth eqth morphth cst_tac (pre,post) power sign div =
+ check_required_library (cdir@["Ring_base"]);
+ let env = Global.env() in
+ let sigma = Evd.empty in
+ let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
+ let (sth,ext) = build_setoid_params r add mul opp req eqth in
+ let (pow_tac, pspec) = interp_power env power in
+ let sspec = interp_sign env sign in
+ let dspec = interp_div env div in
+ let rk = reflect_coeff morphth in
+ let params =
+ exec_tactic env 5 (zltac "ring_lemmas")
+ (List.map carg[sth;ext;rth;pspec;sspec;dspec;rk]) in
+ let lemma1 = constr_of params.(3) in
+ let lemma2 = constr_of params.(4) in
+
+ let lemma1 = decl_constant (string_of_id name^"_ring_lemma1") lemma1 in
+ let lemma2 = decl_constant (string_of_id name^"_ring_lemma2") lemma2 in
+ let cst_tac =
+ interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
+ let pretac =
+ match pre with
+ Some t -> Tacinterp.glob_tactic t
+ | _ -> TacId [] in
+ let posttac =
+ match post with
+ Some t -> Tacinterp.glob_tactic t
+ | _ -> TacId [] in
+ let _ =
+ Lib.add_leaf name
+ (theory_to_obj
+ { ring_carrier = r;
+ ring_req = req;
+ ring_setoid = sth;
+ ring_ext = constr_of params.(1);
+ ring_morph = constr_of params.(2);
+ ring_th = constr_of params.(0);
+ ring_cst_tac = cst_tac;
+ ring_pow_tac = pow_tac;
+ ring_lemma1 = lemma1;
+ ring_lemma2 = lemma2;
+ ring_pre_tac = pretac;
+ ring_post_tac = posttac }) in
+ ()
+
+type ring_mod =
+ Ring_kind of coeff_spec
+ | Const_tac of cst_tac_spec
+ | Pre_tac of raw_tactic_expr
+ | Post_tac of raw_tactic_expr
+ | Setoid of Topconstr.constr_expr * Topconstr.constr_expr
+ | Pow_spec of cst_tac_spec * Topconstr.constr_expr
+ (* Syntaxification tactic , correctness lemma *)
+ | Sign_spec of Topconstr.constr_expr
+ | Div_spec of Topconstr.constr_expr
+
+
+VERNAC ARGUMENT EXTEND ring_mod
+ | [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational (ic eq_test)) ]
+ | [ "abstract" ] -> [ Ring_kind Abstract ]
+ | [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism (ic morph)) ]
+ | [ "constants" "[" tactic(cst_tac) "]" ] -> [ Const_tac(CstTac cst_tac) ]
+ | [ "closed" "[" ne_global_list(l) "]" ] -> [ Const_tac(Closed l) ]
+ | [ "preprocess" "[" tactic(pre) "]" ] -> [ Pre_tac pre ]
+ | [ "postprocess" "[" tactic(post) "]" ] -> [ Post_tac post ]
+ | [ "setoid" constr(sth) constr(ext) ] -> [ Setoid(sth,ext) ]
+ | [ "sign" constr(sign_spec) ] -> [ Sign_spec sign_spec ]
+ | [ "power" constr(pow_spec) "[" ne_global_list(l) "]" ] ->
+ [ Pow_spec (Closed l, pow_spec) ]
+ | [ "power_tac" constr(pow_spec) "[" tactic(cst_tac) "]" ] ->
+ [ Pow_spec (CstTac cst_tac, pow_spec) ]
+ | [ "div" constr(div_spec) ] -> [ Div_spec div_spec ]
+END
+
+let set_once s r v =
+ if !r = None then r := Some v else error (s^" cannot be set twice")
+
+let process_ring_mods l =
+ let kind = ref None in
+ let set = ref None in
+ let cst_tac = ref None in
+ let pre = ref None in
+ let post = ref None in
+ let sign = ref None in
+ let power = ref None in
+ let div = ref None in
+ List.iter(function
+ Ring_kind k -> set_once "ring kind" kind k
+ | Const_tac t -> set_once "tactic recognizing constants" cst_tac t
+ | Pre_tac t -> set_once "preprocess tactic" pre t
+ | Post_tac t -> set_once "postprocess tactic" post t
+ | Setoid(sth,ext) -> set_once "setoid" set (ic sth,ic ext)
+ | Pow_spec(t,spec) -> set_once "power" power (t,spec)
+ | Sign_spec t -> set_once "sign" sign t
+ | Div_spec t -> set_once "div" div t) l;
+ let k = match !kind with Some k -> k | None -> Abstract in
+ (k, !set, !cst_tac, !pre, !post, !power, !sign, !div)
+
+VERNAC COMMAND EXTEND AddSetoidRing
+ | [ "Add" "Ring" ident(id) ":" constr(t) ring_mods(l) ] ->
+ [ let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in
+ add_theory id (ic t) set k cst (pre,post) power sign div]
+END
+
+(*****************************************************************************)
+(* The tactics consist then only in a lookup in the ring database and
+ call the appropriate ltac. *)
+
+let make_args_list rl t =
+ match rl with
+ | [] -> let (_,t1,t2) = dest_rel0 t in [t1;t2]
+ | _ -> rl
+
+let make_term_list carrier rl =
+ List.fold_right
+ (fun x l -> lapp coq_cons [|carrier;x;l|]) rl
+ (lapp coq_nil [|carrier|])
+
+let ltac_ring_structure e =
+ let req = carg e.ring_req in
+ let sth = carg e.ring_setoid in
+ let ext = carg e.ring_ext in
+ let morph = carg e.ring_morph in
+ let th = carg e.ring_th in
+ let cst_tac = Tacexp e.ring_cst_tac in
+ let pow_tac = Tacexp e.ring_pow_tac in
+ let lemma1 = carg e.ring_lemma1 in
+ let lemma2 = carg e.ring_lemma2 in
+ let pretac = Tacexp(TacFun([None],e.ring_pre_tac)) in
+ let posttac = Tacexp(TacFun([None],e.ring_post_tac)) in
+ [req;sth;ext;morph;th;cst_tac;pow_tac;
+ lemma1;lemma2;pretac;posttac]
+
+let ring_lookup (f:glob_tactic_expr) lH rl t gl =
+ let env = pf_env gl in
+ let sigma = project gl in
+ let rl = make_args_list rl t in
+ let e = find_ring_structure env sigma rl in
+ let rl = carg (make_term_list e.ring_carrier rl) in
+ let lH = carg (make_hyp_list env lH) in
+ let ring = ltac_ring_structure e in
+ ltac_apply f (ring@[lH;rl]) gl
+
+TACTIC EXTEND ring_lookup
+| [ "ring_lookup" tactic0(f) "[" constr_list(lH) "]" ne_constr_list(lrt) ] ->
+ [ let (t,lr) = list_sep_last lrt in ring_lookup (fst f) lH lr t]
+END
+
+
+
+(***********************************************************************)
+
+let new_field_path =
+ make_dirpath (List.map id_of_string ["Field_tac";plugin_dir;"Coq"])
+
+let field_ltac s =
+ lazy(make_kn (MPfile new_field_path) (make_dirpath []) (mk_label s))
+
+
+let _ = add_map "field"
+ (map_with_eq
+ [coq_cons,(function -1->Eval|2->Rec|_->Prot);
+ coq_nil, (function -1->Eval|_ -> Prot);
+ (* display_linear: evaluate polynomials and coef operations, protect
+ field operations and make recursive call on the var map *)
+ my_constant "display_linear",
+ (function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot);
+ my_constant "display_pow_linear",
+ (function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot);
+ (* Pphi_dev: evaluate polynomial and coef operations, protect
+ ring operations and make recursive call on the var map *)
+ pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
+ pol_cst "Pphi_pow",
+ (function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
+ (* PEeval: evaluate morphism and polynomial, protect ring
+ operations and make recursive call on the var map *)
+ pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot);
+ (* FEeval: evaluate morphism, protect field
+ operations and make recursive call on the var map *)
+ my_constant "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);;
+
+let _ = add_map "field_cond"
+ (map_with_eq
+ [coq_cons,(function -1->Eval|2->Rec|_->Prot);
+ coq_nil, (function -1->Eval|_ -> Prot);
+ (* PCond: evaluate morphism and denum list, protect ring
+ operations and make recursive call on the var map *)
+ my_constant "PCond", (function -1|8|10|13->Eval|12->Rec|_->Prot)]);;
+(* (function -1|8|10->Eval|9->Rec|_->Prot)]);;*)
+
+
+let _ = Redexpr.declare_reduction "simpl_field_expr"
+ (protect_red "field")
+
+
+
+let afield_theory = my_constant "almost_field_theory"
+let field_theory = my_constant "field_theory"
+let sfield_theory = my_constant "semi_field_theory"
+let af_ar = my_constant"AF_AR"
+let f_r = my_constant"F_R"
+let sf_sr = my_constant"SF_SR"
+let dest_field env sigma th_spec =
+ let th_typ = Retyping.get_type_of env sigma th_spec in
+ match kind_of_term th_typ with
+ | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
+ when f = Lazy.force afield_theory ->
+ let rth = lapp af_ar
+ [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
+ (None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
+ | App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
+ when f = Lazy.force field_theory ->
+ let rth =
+ lapp f_r
+ [|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
+ (Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
+ | App(f,[|r;zero;one;add;mul;div;inv;req|])
+ when f = Lazy.force sfield_theory ->
+ let rth = lapp sf_sr
+ [|r;zero;one;add;mul;div;inv;req;th_spec|] in
+ (Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
+ | _ -> error "bad field structure"
+
+type field_info =
+ { field_carrier : types;
+ field_req : constr;
+ field_cst_tac : glob_tactic_expr;
+ field_pow_tac : glob_tactic_expr;
+ field_ok : constr;
+ field_simpl_eq_ok : constr;
+ field_simpl_ok : constr;
+ field_simpl_eq_in_ok : constr;
+ field_cond : constr;
+ field_pre_tac : glob_tactic_expr;
+ field_post_tac : glob_tactic_expr }
+
+let field_from_carrier = ref Cmap.empty
+let field_from_relation = ref Cmap.empty
+let field_from_name = ref Spmap.empty
+
+
+let field_for_carrier r = Cmap.find r !field_from_carrier
+let field_for_relation rel = Cmap.find rel !field_from_relation
+
+let find_field_structure env sigma l =
+ check_required_library (cdir@["Field_tac"]);
+ match l with
+ | t::cl' ->
+ let ty = Retyping.get_type_of env sigma t in
+ let check c =
+ let ty' = Retyping.get_type_of env sigma c in
+ if not (Reductionops.is_conv env sigma ty ty') then
+ errorlabstrm "field"
+ (str"arguments of field_simplify do not have all the same type")
+ in
+ List.iter check cl';
+ (try field_for_carrier ty
+ with Not_found ->
+ errorlabstrm "field"
+ (str"cannot find a declared field structure over"++
+ spc()++str"\""++pr_constr ty++str"\""))
+ | [] -> assert false
+(* let (req,_,_) = dest_rel cl in
+ (try field_for_relation req
+ with Not_found ->
+ errorlabstrm "field"
+ (str"cannot find a declared field structure for equality"++
+ spc()++str"\""++pr_constr req++str"\"")) *)
+
+let _ =
+ Summary.declare_summary "tactic-new-field-table"
+ { Summary.freeze_function =
+ (fun () -> !field_from_carrier,!field_from_relation,!field_from_name);
+ Summary.unfreeze_function =
+ (fun (ct,rt,nt) ->
+ field_from_carrier := ct; field_from_relation := rt;
+ field_from_name := nt);
+ Summary.init_function =
+ (fun () ->
+ field_from_carrier := Cmap.empty; field_from_relation := Cmap.empty;
+ field_from_name := Spmap.empty) }
+
+let add_field_entry (sp,_kn) e =
+(*
+ let _ = ty e.field_ok in
+ let _ = ty e.field_simpl_eq_ok in
+ let _ = ty e.field_simpl_ok in
+ let _ = ty e.field_cond in
+*)
+ field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier;
+ field_from_relation := Cmap.add e.field_req e !field_from_relation;
+ field_from_name := Spmap.add sp e !field_from_name
+
+let subst_th (subst,th) =
+ let c' = subst_mps subst th.field_carrier in
+ let eq' = subst_mps subst th.field_req in
+ let thm1' = subst_mps subst th.field_ok in
+ let thm2' = subst_mps subst th.field_simpl_eq_ok in
+ let thm3' = subst_mps subst th.field_simpl_ok in
+ let thm4' = subst_mps subst th.field_simpl_eq_in_ok in
+ let thm5' = subst_mps subst th.field_cond in
+ let tac'= subst_tactic subst th.field_cst_tac in
+ let pow_tac' = subst_tactic subst th.field_pow_tac in
+ let pretac'= subst_tactic subst th.field_pre_tac in
+ let posttac'= subst_tactic subst th.field_post_tac in
+ if c' == th.field_carrier &&
+ eq' == th.field_req &&
+ thm1' == th.field_ok &&
+ thm2' == th.field_simpl_eq_ok &&
+ thm3' == th.field_simpl_ok &&
+ thm4' == th.field_simpl_eq_in_ok &&
+ thm5' == th.field_cond &&
+ tac' == th.field_cst_tac &&
+ pow_tac' == th.field_pow_tac &&
+ pretac' == th.field_pre_tac &&
+ posttac' == th.field_post_tac then th
+ else
+ { field_carrier = c';
+ field_req = eq';
+ field_cst_tac = tac';
+ field_pow_tac = pow_tac';
+ field_ok = thm1';
+ field_simpl_eq_ok = thm2';
+ field_simpl_ok = thm3';
+ field_simpl_eq_in_ok = thm4';
+ field_cond = thm5';
+ field_pre_tac = pretac';
+ field_post_tac = posttac' }
+
+let (ftheory_to_obj, obj_to_ftheory) =
+ let cache_th (name,th) = add_field_entry name th in
+ declare_object
+ {(default_object "tactic-new-field-theory") with
+ open_function = (fun i o -> if i=1 then cache_th o);
+ cache_function = cache_th;
+ subst_function = subst_th;
+ classify_function = (fun x -> Substitute x) }
+
+let field_equality r inv req =
+ match kind_of_term req with
+ | App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
+ mkApp((Coqlib.build_coq_eq_data()).congr,[|r;r;inv|])
+ | _ ->
+ let _setoid = setoid_of_relation (Global.env ()) r req in
+ let signature = [Some (r,req)],Some(r,req) in
+ let inv_m, inv_m_lem =
+ try Rewrite.default_morphism signature inv
+ with Not_found ->
+ error "field inverse should be declared as a morphism" in
+ inv_m_lem
+
+let add_field_theory name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
+ check_required_library (cdir@["Field_tac"]);
+ let env = Global.env() in
+ let sigma = Evd.empty in
+ let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
+ dest_field env sigma fth in
+ let (sth,ext) = build_setoid_params r add mul opp req eqth in
+ let eqth = Some(sth,ext) in
+ let _ = add_theory name rth eqth morphth cst_tac (None,None) power sign odiv in
+ let (pow_tac, pspec) = interp_power env power in
+ let sspec = interp_sign env sign in
+ let dspec = interp_div env odiv in
+ let inv_m = field_equality r inv req in
+ let rk = reflect_coeff morphth in
+ let params =
+ exec_tactic env 9 (field_ltac"field_lemmas")
+ (List.map carg[sth;ext;inv_m;fth;pspec;sspec;dspec;rk]) in
+ let lemma1 = constr_of params.(3) in
+ let lemma2 = constr_of params.(4) in
+ let lemma3 = constr_of params.(5) in
+ let lemma4 = constr_of params.(6) in
+ let cond_lemma =
+ match inj with
+ | Some thm -> mkApp(constr_of params.(8),[|thm|])
+ | None -> constr_of params.(7) in
+ let lemma1 = decl_constant (string_of_id name^"_field_lemma1") lemma1 in
+ let lemma2 = decl_constant (string_of_id name^"_field_lemma2") lemma2 in
+ let lemma3 = decl_constant (string_of_id name^"_field_lemma3") lemma3 in
+ let lemma4 = decl_constant (string_of_id name^"_field_lemma4") lemma4 in
+ let cond_lemma = decl_constant (string_of_id name^"_lemma5") cond_lemma in
+ let cst_tac =
+ interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
+ let pretac =
+ match pre with
+ Some t -> Tacinterp.glob_tactic t
+ | _ -> TacId [] in
+ let posttac =
+ match post with
+ Some t -> Tacinterp.glob_tactic t
+ | _ -> TacId [] in
+ let _ =
+ Lib.add_leaf name
+ (ftheory_to_obj
+ { field_carrier = r;
+ field_req = req;
+ field_cst_tac = cst_tac;
+ field_pow_tac = pow_tac;
+ field_ok = lemma1;
+ field_simpl_eq_ok = lemma2;
+ field_simpl_ok = lemma3;
+ field_simpl_eq_in_ok = lemma4;
+ field_cond = cond_lemma;
+ field_pre_tac = pretac;
+ field_post_tac = posttac }) in ()
+
+type field_mod =
+ Ring_mod of ring_mod
+ | Inject of Topconstr.constr_expr
+
+VERNAC ARGUMENT EXTEND field_mod
+ | [ ring_mod(m) ] -> [ Ring_mod m ]
+ | [ "completeness" constr(inj) ] -> [ Inject inj ]
+END
+
+let process_field_mods l =
+ let kind = ref None in
+ let set = ref None in
+ let cst_tac = ref None in
+ let pre = ref None in
+ let post = ref None in
+ let inj = ref None in
+ let sign = ref None in
+ let power = ref None in
+ let div = ref None in
+ List.iter(function
+ Ring_mod(Ring_kind k) -> set_once "field kind" kind k
+ | Ring_mod(Const_tac t) ->
+ set_once "tactic recognizing constants" cst_tac t
+ | Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
+ | Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
+ | Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic sth,ic ext)
+ | Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
+ | Ring_mod(Sign_spec t) -> set_once "sign" sign t
+ | Ring_mod(Div_spec t) -> set_once "div" div t
+ | Inject i -> set_once "infinite property" inj (ic i)) l;
+ let k = match !kind with Some k -> k | None -> Abstract in
+ (k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)
+
+VERNAC COMMAND EXTEND AddSetoidField
+| [ "Add" "Field" ident(id) ":" constr(t) field_mods(l) ] ->
+ [ let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods l in
+ add_field_theory id (ic t) set k cst_tac inj (pre,post) power sign div]
+END
+
+
+let ltac_field_structure e =
+ let req = carg e.field_req in
+ let cst_tac = Tacexp e.field_cst_tac in
+ let pow_tac = Tacexp e.field_pow_tac in
+ let field_ok = carg e.field_ok in
+ let field_simpl_ok = carg e.field_simpl_ok in
+ let field_simpl_eq_ok = carg e.field_simpl_eq_ok in
+ let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in
+ let cond_ok = carg e.field_cond in
+ let pretac = Tacexp(TacFun([None],e.field_pre_tac)) in
+ let posttac = Tacexp(TacFun([None],e.field_post_tac)) in
+ [req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok;
+ field_simpl_eq_in_ok;cond_ok;pretac;posttac]
+
+let field_lookup (f:glob_tactic_expr) lH rl t gl =
+ let env = pf_env gl in
+ let sigma = project gl in
+ let rl = make_args_list rl t in
+ let e = find_field_structure env sigma rl in
+ let rl = carg (make_term_list e.field_carrier rl) in
+ let lH = carg (make_hyp_list env lH) in
+ let field = ltac_field_structure e in
+ ltac_apply f (field@[lH;rl]) gl
+
+
+TACTIC EXTEND field_lookup
+| [ "field_lookup" tactic(f) "[" constr_list(lH) "]" ne_constr_list(lt) ] ->
+ [ let (t,l) = list_sep_last lt in field_lookup (fst f) lH l t ]
+END